Cargando…
Effect of Cleaning Multiple-Funnel Traps on Captures of Bark and Woodboring Beetles in Northeastern United States
SIMPLE SUMMARY: Semiochemical-baited traps are used to survey insect communities and detect invasive species. These traps are left in the field during the growing season where large amounts of pollen and other debris can build up on smooth trapping surfaces. There was a concern this buildup would pr...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7602418/ https://www.ncbi.nlm.nih.gov/pubmed/33066692 http://dx.doi.org/10.3390/insects11100702 |
Sumario: | SIMPLE SUMMARY: Semiochemical-baited traps are used to survey insect communities and detect invasive species. These traps are left in the field during the growing season where large amounts of pollen and other debris can build up on smooth trapping surfaces. There was a concern this buildup would provide an escape route for some insects and interfere with trapping results. We tested the effects of this pollen buildup on captures of bark and woodboring beetles in northeastern forests in two experiments. While many beetles did not respond to treatments, we found a positive effect of trap cleaning for three bark beetles and one cerambycid species. The response of other species was more nuanced. ABSTRACT: Two experiments were conducted in mixed hardwood-conifer forests in the northeastern United States to test the effects of cleaning surfactant and non-surfactant treated multiple-funnel traps used to catch bark and woodboring beetles. Large amounts of pollen and other debris often form a crust on the interior of traps (personal observations). Such surface deposits may provide footholds for beetles to escape capture in traps. In one experiment, we tested cleaned surfactant and non-surfactant traps against non-cleaned surfactant and non-surfactant traps. In a second experiment, we tested field cleaning of modified multiple-funnel traps as an alternative to substituting clean traps on each collection visit. There was no effect of surfactant treated traps, cleaned or not, on total beetles or individual bark beetle species captured. However, in situ cleaned traps were statistically better at capturing total beetles, total bark beetles, and several bark beetle species than non-cleaned control traps. Surfactant-treated non-modified traps and cleaned modified traps had higher species richness and abundance than other treatments at the site level. Our results suggest that cleaning traps to remove accumulated pollen and debris may be helpful for some species but would have limited benefit for broad-scale trapping of bark and woodboring beetles in northeastern forests. |
---|