Cargando…

The Effect of MWCNTs Filler on the Absorbing Properties of OPEFB/PLA Composites Using Microstrip Line at Microwave Frequency

Oil palm empty fruit bunch (OPEFB) fiber/polylactic acid (PLA)-based composites filled with 6–22 wt.% multi-walled carbon nanotubes (MWCNTs) were prepared using a melt blend method. The composites were analyzed using X-ray diffraction (XRD), Fourier transforms infrared (FTIR), field emission scannin...

Descripción completa

Detalles Bibliográficos
Autores principales: Ibrahim Lakin, Ismail, Abbas, Zulkifly, Azis, Rabaah Syahidah, Ibrahim, Nor Azowa, Abd Rahman, Mohd Amiruddin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7602443/
https://www.ncbi.nlm.nih.gov/pubmed/33066690
http://dx.doi.org/10.3390/ma13204581
Descripción
Sumario:Oil palm empty fruit bunch (OPEFB) fiber/polylactic acid (PLA)-based composites filled with 6–22 wt.% multi-walled carbon nanotubes (MWCNTs) were prepared using a melt blend method. The composites were analyzed using X-ray diffraction (XRD), Fourier transforms infrared (FTIR), field emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM) of the MWCNTs. The composites were characterized for complex permittivity using the coaxial probe at 8–12 GHz range and the transmission/reflection coefficients were measured through micro strip line. The dielectric permittivity measurements carried out at X-band frequency revealed that 22 wt.% MWCNTs nanocomposite display higher dielectric constant ([Formula: see text]) and dielectric loss ([Formula: see text]) values of 4.23 and 0.65, respectively. A maximum absorption loss of 15.2 dB was obtained for the 22 wt.% nanocomposites at 11.75 GHz. This result suggests that PLA/OPEFB/MWCNTs composites are a promising cheap and lightweight material for the effective microwave absorption in the X-band frequency range.