Cargando…
Uniform Polishing Method of Spherical Lens Based on Material Removal Model of High-Speed Polishing Procedure
Although the high-speed polishing technology has been widely applied to obtain an ultra-smooth surface in the field of spherical optical manufacture, it is still mainly used in small-size or easily polished lenses. In the infrared optical system, large-size silicon lenses are often used to increase...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7602603/ https://www.ncbi.nlm.nih.gov/pubmed/33076347 http://dx.doi.org/10.3390/mi11100938 |
Sumario: | Although the high-speed polishing technology has been widely applied to obtain an ultra-smooth surface in the field of spherical optical manufacture, it is still mainly used in small-size or easily polished lenses. In the infrared optical system, large-size silicon lenses are often used to increase the luminous flux. As is known, the material is hard-polished, it is time-consuming to reduce the surface roughness by iterative polishing and it is difficult to avoid the form accuracy getting worse. To produce an ultra-smooth surface efficiently without destroying the figure, a scientific understanding of material removal in the high-speed polishing process is necessary, which would lead to the process being more deterministic. In this paper, a mathematical model of material removal is developed based on the classic Preston equation. The predicted results of the proposed model show good agreement with the experimental data. Further, a method to achieve uniform polishing can be addressed with a systematic analysis of the key factors affecting material removal and their contribution to spatial non-uniform removal. Finally, the experimental results indicate that the surface roughness of hard-polished spherical optics can be improved efficiently using the uniform polishing method without the surface figure being destroyed. |
---|