Cargando…
Random forest algorithms for recognizing daily life activities using plantar pressure information: a smart-shoe study
BACKGROUND: Wearable activity trackers are regarded as a new opportunity to deliver health promotion interventions. Indeed, while the prediction of active behaviors is currently primarily relying on the processing of accelerometer sensor data, the emergence of smart clothes with multi-sensing capaci...
Autores principales: | Ren, Dian, Aubert-Kato, Nathanael, Anzai, Emi, Ohta, Yuji, Tripette, Julien |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7602692/ https://www.ncbi.nlm.nih.gov/pubmed/33194400 http://dx.doi.org/10.7717/peerj.10170 |
Ejemplares similares
-
Random forest algorithms to classify frailty and falling history in seniors using plantar pressure measurement insoles: a large-scale feasibility study
por: Anzai, Emi, et al.
Publicado: (2022) -
Correction: Random forest algorithms to classify frailty and falling history in seniors using plantar pressure measurement insoles: a large-scale feasibility study
por: Anzai, Emi, et al.
Publicado: (2022) -
Influences of heel height on human postural stability and functional mobility between inexperienced and experienced high heel shoe wearers
por: Chen, Yiyang, et al.
Publicado: (2020) -
Plantar support adaptations in healthy subjects after eight weeks of barefoot running training
por: Sánchez-Ramírez, Celso, et al.
Publicado: (2020) -
Effects of sex and joint action on voluntary activation
por: Ema, Ryoichi, et al.
Publicado: (2018)