Cargando…
Vertical and Horizontal Transmission of ESBL Plasmid from Escherichia coli O104:H4
Multidrug resistance (MDR) often results from the acquisition of mobile genetic elements (MGEs) that encode MDR gene(s), such as conjugative plasmids. The spread of MDR plasmids is founded on their ability of horizontal transference, as well as their faithful inheritance in progeny cells. Here, we i...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7602700/ https://www.ncbi.nlm.nih.gov/pubmed/33081159 http://dx.doi.org/10.3390/genes11101207 |
_version_ | 1783603744178438144 |
---|---|
author | Daniel, Sandra Goldlust, Kelly Quebre, Valentin Shen, Minjia Lesterlin, Christian Bouet, Jean-Yves Yamaichi, Yoshiharu |
author_facet | Daniel, Sandra Goldlust, Kelly Quebre, Valentin Shen, Minjia Lesterlin, Christian Bouet, Jean-Yves Yamaichi, Yoshiharu |
author_sort | Daniel, Sandra |
collection | PubMed |
description | Multidrug resistance (MDR) often results from the acquisition of mobile genetic elements (MGEs) that encode MDR gene(s), such as conjugative plasmids. The spread of MDR plasmids is founded on their ability of horizontal transference, as well as their faithful inheritance in progeny cells. Here, we investigated the genetic factors involved in the prevalence of the IncI conjugative plasmid pESBL, which was isolated from the Escherichia coli O104:H4 outbreak strain in Germany in 2011. Using transposon-insertion sequencing, we identified the pESBL partitioning locus (par). Genetic, biochemical and microscopic approaches allowed pESBL to be characterized as a new member of the Type Ib partitioning system. Inactivation of par caused mis-segregation of pESBL followed by post-segregational killing (PSK), resulting in a great fitness disadvantage but apparent plasmid stability in the population of viable cells. We constructed a variety of pESBL derivatives with different combinations of mutations in par, conjugational transfer (oriT) and pnd toxin-antitoxin (TA) genes. Only the triple mutant exhibited plasmid-free cells in viable cell populations. Time-lapse tracking of plasmid dynamics in microfluidics indicated that inactivation of pnd improved the survival of plasmid-free cells and allowed oriT-dependent re-acquisition of the plasmid. Altogether, the three factors—active partitioning, toxin-antitoxin and conjugational transfer—are all involved in the prevalence of pESBL in the E. coli population. |
format | Online Article Text |
id | pubmed-7602700 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-76027002020-11-01 Vertical and Horizontal Transmission of ESBL Plasmid from Escherichia coli O104:H4 Daniel, Sandra Goldlust, Kelly Quebre, Valentin Shen, Minjia Lesterlin, Christian Bouet, Jean-Yves Yamaichi, Yoshiharu Genes (Basel) Article Multidrug resistance (MDR) often results from the acquisition of mobile genetic elements (MGEs) that encode MDR gene(s), such as conjugative plasmids. The spread of MDR plasmids is founded on their ability of horizontal transference, as well as their faithful inheritance in progeny cells. Here, we investigated the genetic factors involved in the prevalence of the IncI conjugative plasmid pESBL, which was isolated from the Escherichia coli O104:H4 outbreak strain in Germany in 2011. Using transposon-insertion sequencing, we identified the pESBL partitioning locus (par). Genetic, biochemical and microscopic approaches allowed pESBL to be characterized as a new member of the Type Ib partitioning system. Inactivation of par caused mis-segregation of pESBL followed by post-segregational killing (PSK), resulting in a great fitness disadvantage but apparent plasmid stability in the population of viable cells. We constructed a variety of pESBL derivatives with different combinations of mutations in par, conjugational transfer (oriT) and pnd toxin-antitoxin (TA) genes. Only the triple mutant exhibited plasmid-free cells in viable cell populations. Time-lapse tracking of plasmid dynamics in microfluidics indicated that inactivation of pnd improved the survival of plasmid-free cells and allowed oriT-dependent re-acquisition of the plasmid. Altogether, the three factors—active partitioning, toxin-antitoxin and conjugational transfer—are all involved in the prevalence of pESBL in the E. coli population. MDPI 2020-10-16 /pmc/articles/PMC7602700/ /pubmed/33081159 http://dx.doi.org/10.3390/genes11101207 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Daniel, Sandra Goldlust, Kelly Quebre, Valentin Shen, Minjia Lesterlin, Christian Bouet, Jean-Yves Yamaichi, Yoshiharu Vertical and Horizontal Transmission of ESBL Plasmid from Escherichia coli O104:H4 |
title | Vertical and Horizontal Transmission of ESBL Plasmid from Escherichia coli O104:H4 |
title_full | Vertical and Horizontal Transmission of ESBL Plasmid from Escherichia coli O104:H4 |
title_fullStr | Vertical and Horizontal Transmission of ESBL Plasmid from Escherichia coli O104:H4 |
title_full_unstemmed | Vertical and Horizontal Transmission of ESBL Plasmid from Escherichia coli O104:H4 |
title_short | Vertical and Horizontal Transmission of ESBL Plasmid from Escherichia coli O104:H4 |
title_sort | vertical and horizontal transmission of esbl plasmid from escherichia coli o104:h4 |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7602700/ https://www.ncbi.nlm.nih.gov/pubmed/33081159 http://dx.doi.org/10.3390/genes11101207 |
work_keys_str_mv | AT danielsandra verticalandhorizontaltransmissionofesblplasmidfromescherichiacolio104h4 AT goldlustkelly verticalandhorizontaltransmissionofesblplasmidfromescherichiacolio104h4 AT quebrevalentin verticalandhorizontaltransmissionofesblplasmidfromescherichiacolio104h4 AT shenminjia verticalandhorizontaltransmissionofesblplasmidfromescherichiacolio104h4 AT lesterlinchristian verticalandhorizontaltransmissionofesblplasmidfromescherichiacolio104h4 AT bouetjeanyves verticalandhorizontaltransmissionofesblplasmidfromescherichiacolio104h4 AT yamaichiyoshiharu verticalandhorizontaltransmissionofesblplasmidfromescherichiacolio104h4 |