Cargando…

A Sensitive FRET Biosensor Based on Carbon Dots-Modified Nanoporous Membrane for 8-hydroxy-2′-Deoxyguanosine (8-OHdG) Detection with Au@ZIF-8 Nanoparticles as Signal Quenchers

A sensitive fluorescence resonance energy transfer (FRET) biosensor is proposed to detect 8-hydroxy-2′-deoxyguanosine (8-OHdG), which is a typical DNA oxidation damage product excreted in human urine. The FRET biosensor was based on carbon dots (CDs)-modified nanoporous alumina membrane with CDs as...

Descripción completa

Detalles Bibliográficos
Autores principales: Ye, Weiwei, Zhang, Yu, Hu, Wei, Wang, Liwen, Wang, Ping
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7602734/
https://www.ncbi.nlm.nih.gov/pubmed/33081163
http://dx.doi.org/10.3390/nano10102044
Descripción
Sumario:A sensitive fluorescence resonance energy transfer (FRET) biosensor is proposed to detect 8-hydroxy-2′-deoxyguanosine (8-OHdG), which is a typical DNA oxidation damage product excreted in human urine. The FRET biosensor was based on carbon dots (CDs)-modified nanoporous alumina membrane with CDs as fluorescence donors. Gold nanoparticles were encapsulated in zeolitic imidazolate framework-8 to form Au@ZIF-8 nanoparticles as signal quenchers. CDs and Au@ZIF-8 nanoparticles were biofunctionalized by 8-OHdG antibody. The capture of 8-OHdG on the membrane substrates can bring Au@ZIF-8 nanoparticles closely to CDs. With 350 nm excitation, the fluorescence of CDs was quenched by Au@ZIF-8 nanoparticles and FRET effect occurred. The quenching efficiency was analyzed. The limit of detection (LOD) was 0.31 nM. Interference experiments of the FRET biosensor showed good specificity for 8-OHdG detection. The biosensor could detect urinary 8-OHdG sensitively and selectively with simple sample pretreatment processes. It shows applicability for detecting biomarkers of DNA damage in urine or other biological fluids.