Cargando…
Pet-Human Gut Microbiome Host Classifier Using Data from Different Studies
(1) Background: microbiome host classification can be used to identify sources of contamination in environmental data. However, there is no ready-to-use host classifier. Here, we aimed to build a model that would be able to discriminate between pet and human microbiomes samples. The challenge of the...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7602744/ https://www.ncbi.nlm.nih.gov/pubmed/33076521 http://dx.doi.org/10.3390/microorganisms8101591 |
Sumario: | (1) Background: microbiome host classification can be used to identify sources of contamination in environmental data. However, there is no ready-to-use host classifier. Here, we aimed to build a model that would be able to discriminate between pet and human microbiomes samples. The challenge of the study was to build a classifier using data solely from publicly available studies that normally contain sequencing data for only one type of host. (2) Results: we have developed a random forest model that distinguishes human microbiota from domestic pet microbiota (cats and dogs) with 97% accuracy. In order to prevent overfitting, samples from several (at least four) different projects were necessary. Feature importance analysis revealed that the model relied on several taxa known to be key components in domestic cat and dog microbiomes (such as Fusobacteriaceae and Peptostreptococcaeae), as well as on some taxa exclusively found in humans (as Akkermansiaceae). (3) Conclusion: we have shown that it is possible to make a reliable pet/human gut microbiome classifier on the basis of the data collected from different studies. |
---|