Cargando…

Nonhistone Proteins HMGB1 and HMGB2 Differentially Modulate the Response of Human Embryonic Stem Cells and the Progenitor Cells to the Anticancer Drug Etoposide

HMGB1 and HMGB2 proteins are abundantly expressed in human embryonic stem cells (hESCs) and hESC-derived progenitor cells (neuroectodermal cells, hNECs), though their functional roles in pluripotency and the mechanisms underlying their differentiation in response to the anticancer drug etoposide rem...

Descripción completa

Detalles Bibliográficos
Autores principales: Bagherpoor, Alireza Jian, Kučírek, Martin, Fedr, Radek, Sani, Soodabeh Abbasi, Štros, Michal
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7602880/
https://www.ncbi.nlm.nih.gov/pubmed/33076532
http://dx.doi.org/10.3390/biom10101450
_version_ 1783603787800248320
author Bagherpoor, Alireza Jian
Kučírek, Martin
Fedr, Radek
Sani, Soodabeh Abbasi
Štros, Michal
author_facet Bagherpoor, Alireza Jian
Kučírek, Martin
Fedr, Radek
Sani, Soodabeh Abbasi
Štros, Michal
author_sort Bagherpoor, Alireza Jian
collection PubMed
description HMGB1 and HMGB2 proteins are abundantly expressed in human embryonic stem cells (hESCs) and hESC-derived progenitor cells (neuroectodermal cells, hNECs), though their functional roles in pluripotency and the mechanisms underlying their differentiation in response to the anticancer drug etoposide remain to be elucidated. Here, we show that HMGB1 and/or HMGB2 knockdown (KD) by shRNA in hESCs did not affect the cell stemness/pluripotency regardless of etoposide treatments, while in hESC-derived neuroectodermal cells, treatment resulted in differential effects on cell survival and the generation of rosette structures. The objective of this work was to determine whether HMGB1/2 proteins could modulate the sensitivity of hESCs and hESC-derived progenitor cells (hNECs) to etoposide. We observed that HMGB1 KD knockdown (KD) and, to a lesser extent, HMGB2 KD enhanced the sensitivity of hESCs to etoposide. Enhanced accumulation of 53BP1 on telomeres was detected by confocal microscopy in both untreated and etoposide-treated HMGB1 KD hESCs and hNECs, indicating that the loss of HMGB1 could destabilize telomeres. On the other hand, decreased accumulation of 53BP1 on telomeres in etoposide-treated HMGB2 KD hESCs (but not in HMGB2 KD hNECs) suggested that the loss of HMGB2 promoted the stability of telomeres. Etoposide treatment of hESCs resulted in a significant enhancement of telomerase activity, with the highest increase observed in the HMGB2 KD cells. Interestingly, no changes in telomerase activity were found in etoposide-treated control hNECs, but HMGB2 KD (unlike HMGB1 KD) markedly decreased telomerase activity in these cells. Changes in telomerase activity in the etoposide-treated HMGB2 KD hESCs or hNECs coincided with the appearance of DNA damage markers and could already be observed before the onset of apoptosis. Collectively, we have demonstrated that HMGB1 or HMGB2 differentially modulate the impact of etoposide treatment on human embryonic stem cells and their progenitor cells, suggesting possible strategies for the enhancement of the efficacy of this anticancer drug.
format Online
Article
Text
id pubmed-7602880
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-76028802020-11-01 Nonhistone Proteins HMGB1 and HMGB2 Differentially Modulate the Response of Human Embryonic Stem Cells and the Progenitor Cells to the Anticancer Drug Etoposide Bagherpoor, Alireza Jian Kučírek, Martin Fedr, Radek Sani, Soodabeh Abbasi Štros, Michal Biomolecules Article HMGB1 and HMGB2 proteins are abundantly expressed in human embryonic stem cells (hESCs) and hESC-derived progenitor cells (neuroectodermal cells, hNECs), though their functional roles in pluripotency and the mechanisms underlying their differentiation in response to the anticancer drug etoposide remain to be elucidated. Here, we show that HMGB1 and/or HMGB2 knockdown (KD) by shRNA in hESCs did not affect the cell stemness/pluripotency regardless of etoposide treatments, while in hESC-derived neuroectodermal cells, treatment resulted in differential effects on cell survival and the generation of rosette structures. The objective of this work was to determine whether HMGB1/2 proteins could modulate the sensitivity of hESCs and hESC-derived progenitor cells (hNECs) to etoposide. We observed that HMGB1 KD knockdown (KD) and, to a lesser extent, HMGB2 KD enhanced the sensitivity of hESCs to etoposide. Enhanced accumulation of 53BP1 on telomeres was detected by confocal microscopy in both untreated and etoposide-treated HMGB1 KD hESCs and hNECs, indicating that the loss of HMGB1 could destabilize telomeres. On the other hand, decreased accumulation of 53BP1 on telomeres in etoposide-treated HMGB2 KD hESCs (but not in HMGB2 KD hNECs) suggested that the loss of HMGB2 promoted the stability of telomeres. Etoposide treatment of hESCs resulted in a significant enhancement of telomerase activity, with the highest increase observed in the HMGB2 KD cells. Interestingly, no changes in telomerase activity were found in etoposide-treated control hNECs, but HMGB2 KD (unlike HMGB1 KD) markedly decreased telomerase activity in these cells. Changes in telomerase activity in the etoposide-treated HMGB2 KD hESCs or hNECs coincided with the appearance of DNA damage markers and could already be observed before the onset of apoptosis. Collectively, we have demonstrated that HMGB1 or HMGB2 differentially modulate the impact of etoposide treatment on human embryonic stem cells and their progenitor cells, suggesting possible strategies for the enhancement of the efficacy of this anticancer drug. MDPI 2020-10-15 /pmc/articles/PMC7602880/ /pubmed/33076532 http://dx.doi.org/10.3390/biom10101450 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Bagherpoor, Alireza Jian
Kučírek, Martin
Fedr, Radek
Sani, Soodabeh Abbasi
Štros, Michal
Nonhistone Proteins HMGB1 and HMGB2 Differentially Modulate the Response of Human Embryonic Stem Cells and the Progenitor Cells to the Anticancer Drug Etoposide
title Nonhistone Proteins HMGB1 and HMGB2 Differentially Modulate the Response of Human Embryonic Stem Cells and the Progenitor Cells to the Anticancer Drug Etoposide
title_full Nonhistone Proteins HMGB1 and HMGB2 Differentially Modulate the Response of Human Embryonic Stem Cells and the Progenitor Cells to the Anticancer Drug Etoposide
title_fullStr Nonhistone Proteins HMGB1 and HMGB2 Differentially Modulate the Response of Human Embryonic Stem Cells and the Progenitor Cells to the Anticancer Drug Etoposide
title_full_unstemmed Nonhistone Proteins HMGB1 and HMGB2 Differentially Modulate the Response of Human Embryonic Stem Cells and the Progenitor Cells to the Anticancer Drug Etoposide
title_short Nonhistone Proteins HMGB1 and HMGB2 Differentially Modulate the Response of Human Embryonic Stem Cells and the Progenitor Cells to the Anticancer Drug Etoposide
title_sort nonhistone proteins hmgb1 and hmgb2 differentially modulate the response of human embryonic stem cells and the progenitor cells to the anticancer drug etoposide
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7602880/
https://www.ncbi.nlm.nih.gov/pubmed/33076532
http://dx.doi.org/10.3390/biom10101450
work_keys_str_mv AT bagherpooralirezajian nonhistoneproteinshmgb1andhmgb2differentiallymodulatetheresponseofhumanembryonicstemcellsandtheprogenitorcellstotheanticancerdrugetoposide
AT kucirekmartin nonhistoneproteinshmgb1andhmgb2differentiallymodulatetheresponseofhumanembryonicstemcellsandtheprogenitorcellstotheanticancerdrugetoposide
AT fedrradek nonhistoneproteinshmgb1andhmgb2differentiallymodulatetheresponseofhumanembryonicstemcellsandtheprogenitorcellstotheanticancerdrugetoposide
AT sanisoodabehabbasi nonhistoneproteinshmgb1andhmgb2differentiallymodulatetheresponseofhumanembryonicstemcellsandtheprogenitorcellstotheanticancerdrugetoposide
AT strosmichal nonhistoneproteinshmgb1andhmgb2differentiallymodulatetheresponseofhumanembryonicstemcellsandtheprogenitorcellstotheanticancerdrugetoposide