Cargando…

Effect of Electrolyzed Alkaline-Reduced Water on the Early Strength Development of Cement Mortar Using Blast Furnace Slag

This study evaluated the use of electrolyzed alkaline-reduced water instead of an alkaline activator for the production of a strong cement matrix with a large blast furnace slag replacement ratio. The flexural and compressive strength measurements, X-ray diffraction analysis, and scanning electron m...

Descripción completa

Detalles Bibliográficos
Autores principales: Lee, Taegyu, Kim, Suna, Park, Sun-Gyu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7602973/
https://www.ncbi.nlm.nih.gov/pubmed/33081301
http://dx.doi.org/10.3390/ma13204620
Descripción
Sumario:This study evaluated the use of electrolyzed alkaline-reduced water instead of an alkaline activator for the production of a strong cement matrix with a large blast furnace slag replacement ratio. The flexural and compressive strength measurements, X-ray diffraction analysis, and scanning electron microscopy images of the cement matrices produced using electrolyzed alkaline-reduced water and regular tap water, and with blast furnace slag replacement ratios of 30 and 50% were compared to a normal cement matrix. The cement matrix produced using electrolyzed alkaline-reduced water and blast furnace slag exhibited an improved early age strength, where hydrate formation increased on the particle surface. The cement matrix produced using electrolyzed alkaline-reduced water exhibited a high strength development rate of over 90% of ordinary Portland cement (OPC) in BFS30. Therefore, the use of electrolyzed alkaline-reduced water in the place of an alkaline activator allowed for the formation of a very strong cement matrix in the early stages of aging when a large blast furnace slag replacement ratio was used.