Cargando…
Cx43 Present at the Leading Edge Membrane Governs Promigratory Effects of Osteoblast-Conditioned Medium on Human Prostate Cancer Cells in the Context of Bone Metastasis
SIMPLE SUMMARY: In its late stages, prostate cancer (PCa) is characterized by a high propensity to form osteoblastic bone metastases, mainly treated by palliative approaches. In a previous work, we demonstrated that a gap junctional protein, connexin43 (Cx43) is implicated both in the increase of ag...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7602984/ https://www.ncbi.nlm.nih.gov/pubmed/33081404 http://dx.doi.org/10.3390/cancers12103013 |
Sumario: | SIMPLE SUMMARY: In its late stages, prostate cancer (PCa) is characterized by a high propensity to form osteoblastic bone metastases, mainly treated by palliative approaches. In a previous work, we demonstrated that a gap junctional protein, connexin43 (Cx43) is implicated both in the increase of aggressiveness of PCa cells and in their impact on bone. To analyze the reciprocal part of the dialogue, the current study addresses the role of Cx43 in the impact of bone microenvironment on PCa cells abilities. Using Cx43-overexpressing PCa cell lines, we determined that Cx43 is necessary for promigratory effect induced by osteoblastic conditioned media (ObCM) on individual cells. Next, we demonstrated the requirement of Cx43 membrane localization at the leading edge and the involvement of the cytoplasmic part in this ObCM-induced migration. Overall, our findings precise the role of Cx43 during PCa progression and its putative use as aggressiveness marker and as potential therapeutic targets. ABSTRACT: Among the different interacting molecules implicated in bone metastases, connexin43 (Cx43) may increase sensitivity of prostate cancer (PCa) cells to bone microenvironment, as suggested by our in silico and human tissue samples analyses that revealed increased level of Cx43 expression with PCa progression and a Cx43 specific expression in bone secondary sites. The goal of the present study was to understand how Cx43 influences PCa cells sensitivity and aggressiveness to bone microenvironment. By means of Cx43-overexpressing PCa cell lines, we revealed a Cx43-dependent promigratory effect of osteoblastic conditioned media (ObCM). This effect on directional migration relied on the presence of Cx43 at the plasma membrane and not on gap junctional intercellular communication and hemichannel functions. ObCM stimulation induced Rac1 activation and Cx43 interaction with cortactin in protrusions of migrating PCa cells. Finally, by transfecting two different truncated forms of Cx43 in LNCaP cells, we determined that the carboxy terminal (CT) part of Cx43 is crucial for the responsiveness of PCa cells to ObCM. Our study demonstrates that Cx43 level and its membrane localization modulate the phenotypic response of PCa cells to osteoblastic microenvironment and that its CT domain plays a pivotal role. |
---|