Cargando…

Intestinal Microbiota in Colorectal Cancer Surgery

SIMPLE SUMMARY: The microbial communities of the intestine exist in a delicate balance with the human. Colorectal cancer is one of the most common gastrointestinal malignancies, and the microbiota seems to be related to it. The intestinal microbiota of patients after colorectal surgery is changed du...

Descripción completa

Detalles Bibliográficos
Autores principales: Koliarakis, Ioannis, Athanasakis, Elias, Sgantzos, Markos, Mariolis-Sapsakos, Theodoros, Xynos, Evangelos, Chrysos, Emmanuel, Souglakos, John, Tsiaoussis, John
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7602998/
https://www.ncbi.nlm.nih.gov/pubmed/33081401
http://dx.doi.org/10.3390/cancers12103011
Descripción
Sumario:SIMPLE SUMMARY: The microbial communities of the intestine exist in a delicate balance with the human. Colorectal cancer is one of the most common gastrointestinal malignancies, and the microbiota seems to be related to it. The intestinal microbiota of patients after colorectal surgery is changed due to surgical stress and other perioperative factors. The occurrence of complications after colorectal cancer (CRC) surgery may depend on these bacterial shifts, which could also be associated with prognosis and survival in postoperative CRC patients. ABSTRACT: The intestinal microbiota consists of numerous microbial species that collectively interact with the host, playing a crucial role in health and disease. Colorectal cancer is well-known to be related to dysbiotic alterations in intestinal microbiota. It is evident that the microbiota is significantly affected by colorectal surgery in combination with the various perioperative interventions, mainly mechanical bowel preparation and antibiotic prophylaxis. The altered postoperative composition of intestinal microbiota could lead to an enhanced virulence, proliferation of pathogens, and diminishment of beneficial microorganisms resulting in severe complications including anastomotic leakage and surgical site infections. Moreover, the intestinal microbiota could be utilized as a possible biomarker in predicting long-term outcomes after surgical CRC treatment. Understanding the underlying mechanisms of these interactions will further support the establishment of genomic mapping of intestinal microbiota in the management of patients undergoing CRC surgery.