Cargando…
Radiomic Features and Machine Learning for the Discrimination of Renal Tumor Histological Subtypes: A Pragmatic Study Using Clinical-Routine Computed Tomography
SIMPLE SUMMARY: This study evaluates how advanced image analyses (radiomic features) and machine learning algorithms can help to distinguish subtypes of kidney tumors in computed tomography (CT) images, which is important for further patient treatment. For 201 patients, the image analyses showed a m...
Autores principales: | Uhlig, Johannes, Leha, Andreas, Delonge, Laura M., Haack, Anna-Maria, Shuch, Brian, Kim, Hyun S., Bremmer, Felix, Trojan, Lutz, Lotz, Joachim, Uhlig, Annemarie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7603020/ https://www.ncbi.nlm.nih.gov/pubmed/33081400 http://dx.doi.org/10.3390/cancers12103010 |
Ejemplares similares
-
Discriminating malignant and benign clinical T1 renal masses on computed tomography: A pragmatic radiomics and machine learning approach
por: Uhlig, Johannes, et al.
Publicado: (2020) -
Tumor laterality in renal cancer as a predictor of survival in large patient cohorts: A STROBE compliant study
por: Strauss, Arne, et al.
Publicado: (2019) -
Contrast Enhancement on Cone-Beam Breast-CT for Discrimination of Breast Cancer Immunohistochemical Subtypes()()()
por: Uhlig, Johannes, et al.
Publicado: (2017) -
Impact of multiparametric magnetic resonance imaging targeted biopsy on functional outcomes in patients following robot-assisted laparoscopic radical prostatectomy
por: Leitsmann, Conrad, et al.
Publicado: (2023) -
Primary bladder adenocarcinoma: Case report with long-term follow-up
por: Uhlig, Annemarie, et al.
Publicado: (2018)