Cargando…
A Light-Weight Deep-Learning Model with Multi-Scale Features for Steel Surface Defect Classification
Automatic inspection of surface defects is crucial in industries for real-time applications. Nowadays, computer vision-based approaches have been successfully employed. However, most of the existing works need a large number of training samples to achieve satisfactory classification results, while c...
Autores principales: | Liu, Yang, Yuan, Yachao, Balta, Cristhian, Liu, Jing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7603043/ https://www.ncbi.nlm.nih.gov/pubmed/33081388 http://dx.doi.org/10.3390/ma13204629 |
Ejemplares similares
-
A multi-scale pooling convolutional neural network for accurate steel surface defects classification
por: Fu, Guizhong, et al.
Publicado: (2023) -
MSF-Net: Multi-Scale Feature Learning Network for Classification of Surface Defects of Multifarious Sizes
por: Xu, Pengcheng, et al.
Publicado: (2021) -
Multilayer Feature Extraction of AGCN on Surface Defect Detection of Steel Plates
por: Zhang, Chi, et al.
Publicado: (2022) -
Multi-Sensor Data Integration Using Deep Learning for Characterization of Defects in Steel Elements †
por: Psuj, Grzegorz
Publicado: (2018) -
FDD: a deep learning–based steel defect detectors
por: Akhyar, Fityanul, et al.
Publicado: (2023)