Cargando…

Axial Orientation of Co-Crystalline Phases of Poly(2,6-Dimethyl-1,4-Phenylene)Oxide Films

Films exhibiting co-crystalline (CC) phases between a polymer host and low-molecular-mass guest molecules are relevant for many applications. As is usual for semi-crystalline polymers, axially oriented films can give relevant information on the crystalline structure, both by Wide Angle X-ray diffrac...

Descripción completa

Detalles Bibliográficos
Autores principales: Golla, Manohar, Nagendra, Baku, Daniel, Christophe, Rizzo, Paola, Guerra, Gaetano
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7603056/
https://www.ncbi.nlm.nih.gov/pubmed/33080828
http://dx.doi.org/10.3390/polym12102394
Descripción
Sumario:Films exhibiting co-crystalline (CC) phases between a polymer host and low-molecular-mass guest molecules are relevant for many applications. As is usual for semi-crystalline polymers, axially oriented films can give relevant information on the crystalline structure, both by Wide Angle X-ray diffraction fiber patterns and by polarized Fourier-transform infrared spectroscopy. Axially oriented CC phases of poly(2,6-dimethyl-1,4-phenylene)oxide (PPO) with 1,3,5-trimethylbenzene (mesitylene) can be simply obtained by the stretching of CC PPO films. In fact, due to the plasticization effect of this highly boiling guest, PPO orientation can occur in a stretching temperature range (170–175 °C) nearly 50 °C lower than that generally needed for PPO films (220–230 °C). This low stretching temperature range allows avoidance of polymer oxidation, as well as formation of the mesomorphic dense γ PPO phase. Axially oriented CC phases of PPO with toluene, i.e., with a more volatile guest, can be instead obtained by the stretching (in the same low temperature range: 170–175 °C) of CC PPO blend films with polystyrene.