Cargando…

Engineering Properties of Superconducting Materials

Taking a technology from the laboratory to industry is a long and resource-consuming process. Discovered more than a century ago, the phenomenon of superconductivity is testament to this process. Despite the promise of this technology, currently the only major use of superconductors outside the labo...

Descripción completa

Detalles Bibliográficos
Autor principal: Coombs, Tim
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7603100/
https://www.ncbi.nlm.nih.gov/pubmed/33086475
http://dx.doi.org/10.3390/ma13204652
Descripción
Sumario:Taking a technology from the laboratory to industry is a long and resource-consuming process. Discovered more than a century ago, the phenomenon of superconductivity is testament to this process. Despite the promise of this technology, currently the only major use of superconductors outside the laboratory is in MRI machines. The advent of high-temperature superconductors in 1986 heralded a new dawn. Machines which do not require cooling with liquid helium are a very attractive target. A myriad range of different superconductors were rapidly discovered over the next decade. This process of discovery continues to this day with, most recently, a whole new class, the pnictides, being discovered in 2006. Many different usages have been identified, including in motors, generators, wind turbines, fault current limiters, and high-current low-loss cables. This Special Issue looks at some of the different factors which will help to realise these devices and thereby bring about a superconducting world