Cargando…
Performance and clinical utility of supervised machine-learning approaches in detecting familial hypercholesterolaemia in primary care
Familial hypercholesterolaemia (FH) is a common inherited disorder, causing lifelong elevated low-density lipoprotein cholesterol (LDL-C). Most individuals with FH remain undiagnosed, precluding opportunities to prevent premature heart disease and death. Some machine-learning approaches improve dete...
Autores principales: | Akyea, Ralph K., Qureshi, Nadeem, Kai, Joe, Weng, Stephen F. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7603302/ https://www.ncbi.nlm.nih.gov/pubmed/33145438 http://dx.doi.org/10.1038/s41746-020-00349-5 |
Ejemplares similares
-
Detection of familial hypercholesterolaemia: external validation of the FAMCAT clinical case-finding algorithm to identify patients in primary care
por: Weng, Stephen, et al.
Publicado: (2019) -
Statin treatment and LDL-cholesterol treatment goal attainment among individuals with familial hypercholesterolaemia in primary care
por: Iyen, Barbara, et al.
Publicado: (2021) -
Comparing the performance of the novel FAMCAT algorithms and established case-finding criteria for familial hypercholesterolaemia in primary care
por: Qureshi, Nadeem, et al.
Publicado: (2021) -
Case-finding and genetic testing for familial hypercholesterolaemia in primary care
por: Qureshi, Nadeem, et al.
Publicado: (2021) -
Cost-Effectiveness of Screening Algorithms for Familial Hypercholesterolaemia in Primary Care
por: Jones, Matthew, et al.
Publicado: (2022)