Cargando…

Machine learning enables improved runtime and precision for bio-loggers on seabirds

Unravelling the secrets of wild animals is one of the biggest challenges in ecology, with bio-logging (i.e., the use of animal-borne loggers or bio-loggers) playing a pivotal role in tackling this challenge. Bio-logging allows us to observe many aspects of animals’ lives, including their behaviours,...

Descripción completa

Detalles Bibliográficos
Autores principales: Korpela, Joseph, Suzuki, Hirokazu, Matsumoto, Sakiko, Mizutani, Yuichi, Samejima, Masaki, Maekawa, Takuya, Nakai, Junichi, Yoda, Ken
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7603325/
https://www.ncbi.nlm.nih.gov/pubmed/33127951
http://dx.doi.org/10.1038/s42003-020-01356-8
Descripción
Sumario:Unravelling the secrets of wild animals is one of the biggest challenges in ecology, with bio-logging (i.e., the use of animal-borne loggers or bio-loggers) playing a pivotal role in tackling this challenge. Bio-logging allows us to observe many aspects of animals’ lives, including their behaviours, physiology, social interactions, and external environment. However, bio-loggers have short runtimes when collecting data from resource-intensive (high-cost) sensors. This study proposes using AI on board video-loggers in order to use low-cost sensors (e.g., accelerometers) to automatically detect and record complex target behaviours that are of interest, reserving their devices’ limited resources for just those moments. We demonstrate our method on bio-loggers attached to seabirds including gulls and shearwaters, where it captured target videos with 15 times the precision of a baseline periodic-sampling method. Our work will provide motivation for more widespread adoption of AI in bio-loggers, helping us to shed light onto until now hidden aspects of animals’ lives.