Cargando…

Sequential generation of linear cluster states from a single photon emitter

Light states composed of multiple entangled photons—such as cluster states—are essential for developing and scaling-up quantum computing networks. Photonic cluster states can be obtained from single-photon sources and entangling gates, but so far this has only been done with probabilistic sources co...

Descripción completa

Detalles Bibliográficos
Autores principales: Istrati, D., Pilnyak, Y., Loredo, J. C., Antón, C., Somaschi, N., Hilaire, P., Ollivier, H., Esmann, M., Cohen, L., Vidro, L., Millet, C., Lemaître, A., Sagnes, I., Harouri, A., Lanco, L., Senellart, P., Eisenberg, H. S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7603328/
https://www.ncbi.nlm.nih.gov/pubmed/33127924
http://dx.doi.org/10.1038/s41467-020-19341-4
_version_ 1783603895616929792
author Istrati, D.
Pilnyak, Y.
Loredo, J. C.
Antón, C.
Somaschi, N.
Hilaire, P.
Ollivier, H.
Esmann, M.
Cohen, L.
Vidro, L.
Millet, C.
Lemaître, A.
Sagnes, I.
Harouri, A.
Lanco, L.
Senellart, P.
Eisenberg, H. S.
author_facet Istrati, D.
Pilnyak, Y.
Loredo, J. C.
Antón, C.
Somaschi, N.
Hilaire, P.
Ollivier, H.
Esmann, M.
Cohen, L.
Vidro, L.
Millet, C.
Lemaître, A.
Sagnes, I.
Harouri, A.
Lanco, L.
Senellart, P.
Eisenberg, H. S.
author_sort Istrati, D.
collection PubMed
description Light states composed of multiple entangled photons—such as cluster states—are essential for developing and scaling-up quantum computing networks. Photonic cluster states can be obtained from single-photon sources and entangling gates, but so far this has only been done with probabilistic sources constrained to intrinsically low efficiencies, and an increasing hardware overhead. Here, we report the resource-efficient generation of polarization-encoded, individually-addressable photons in linear cluster states occupying a single spatial mode. We employ a single entangling-gate in a fiber loop configuration to sequentially entangle an ever-growing stream of photons originating from the currently most efficient single-photon source technology—a semiconductor quantum dot. With this apparatus, we demonstrate the generation of linear cluster states up to four photons in a single-mode fiber. The reported architecture can be programmed for linear-cluster states of any number of photons, that are required for photonic one-way quantum computing schemes.
format Online
Article
Text
id pubmed-7603328
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-76033282020-11-10 Sequential generation of linear cluster states from a single photon emitter Istrati, D. Pilnyak, Y. Loredo, J. C. Antón, C. Somaschi, N. Hilaire, P. Ollivier, H. Esmann, M. Cohen, L. Vidro, L. Millet, C. Lemaître, A. Sagnes, I. Harouri, A. Lanco, L. Senellart, P. Eisenberg, H. S. Nat Commun Article Light states composed of multiple entangled photons—such as cluster states—are essential for developing and scaling-up quantum computing networks. Photonic cluster states can be obtained from single-photon sources and entangling gates, but so far this has only been done with probabilistic sources constrained to intrinsically low efficiencies, and an increasing hardware overhead. Here, we report the resource-efficient generation of polarization-encoded, individually-addressable photons in linear cluster states occupying a single spatial mode. We employ a single entangling-gate in a fiber loop configuration to sequentially entangle an ever-growing stream of photons originating from the currently most efficient single-photon source technology—a semiconductor quantum dot. With this apparatus, we demonstrate the generation of linear cluster states up to four photons in a single-mode fiber. The reported architecture can be programmed for linear-cluster states of any number of photons, that are required for photonic one-way quantum computing schemes. Nature Publishing Group UK 2020-10-30 /pmc/articles/PMC7603328/ /pubmed/33127924 http://dx.doi.org/10.1038/s41467-020-19341-4 Text en © The Author(s) 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Istrati, D.
Pilnyak, Y.
Loredo, J. C.
Antón, C.
Somaschi, N.
Hilaire, P.
Ollivier, H.
Esmann, M.
Cohen, L.
Vidro, L.
Millet, C.
Lemaître, A.
Sagnes, I.
Harouri, A.
Lanco, L.
Senellart, P.
Eisenberg, H. S.
Sequential generation of linear cluster states from a single photon emitter
title Sequential generation of linear cluster states from a single photon emitter
title_full Sequential generation of linear cluster states from a single photon emitter
title_fullStr Sequential generation of linear cluster states from a single photon emitter
title_full_unstemmed Sequential generation of linear cluster states from a single photon emitter
title_short Sequential generation of linear cluster states from a single photon emitter
title_sort sequential generation of linear cluster states from a single photon emitter
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7603328/
https://www.ncbi.nlm.nih.gov/pubmed/33127924
http://dx.doi.org/10.1038/s41467-020-19341-4
work_keys_str_mv AT istratid sequentialgenerationoflinearclusterstatesfromasinglephotonemitter
AT pilnyaky sequentialgenerationoflinearclusterstatesfromasinglephotonemitter
AT loredojc sequentialgenerationoflinearclusterstatesfromasinglephotonemitter
AT antonc sequentialgenerationoflinearclusterstatesfromasinglephotonemitter
AT somaschin sequentialgenerationoflinearclusterstatesfromasinglephotonemitter
AT hilairep sequentialgenerationoflinearclusterstatesfromasinglephotonemitter
AT ollivierh sequentialgenerationoflinearclusterstatesfromasinglephotonemitter
AT esmannm sequentialgenerationoflinearclusterstatesfromasinglephotonemitter
AT cohenl sequentialgenerationoflinearclusterstatesfromasinglephotonemitter
AT vidrol sequentialgenerationoflinearclusterstatesfromasinglephotonemitter
AT milletc sequentialgenerationoflinearclusterstatesfromasinglephotonemitter
AT lemaitrea sequentialgenerationoflinearclusterstatesfromasinglephotonemitter
AT sagnesi sequentialgenerationoflinearclusterstatesfromasinglephotonemitter
AT harouria sequentialgenerationoflinearclusterstatesfromasinglephotonemitter
AT lancol sequentialgenerationoflinearclusterstatesfromasinglephotonemitter
AT senellartp sequentialgenerationoflinearclusterstatesfromasinglephotonemitter
AT eisenberghs sequentialgenerationoflinearclusterstatesfromasinglephotonemitter