Cargando…

An integrated model system to gain mechanistic insights into biofilm-associated antimicrobial resistance in Pseudomonas aeruginosa MPAO1

Pseudomonas aeruginosa MPAO1 is the parental strain of the widely utilized transposon mutant collection for this important clinical pathogen. Here, we validate a model system to identify genes involved in biofilm growth and biofilm-associated antibiotic resistance. Our model employs a genomics-drive...

Descripción completa

Detalles Bibliográficos
Autores principales: Varadarajan, Adithi R., Allan, Raymond N., Valentin, Jules D. P., Castañeda Ocampo, Olga E., Somerville, Vincent, Pietsch, Franziska, Buhmann, Matthias T., West, Jonathan, Skipp, Paul J., van der Mei, Henny C., Ren, Qun, Schreiber, Frank, Webb, Jeremy S., Ahrens, Christian H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7603352/
https://www.ncbi.nlm.nih.gov/pubmed/33127897
http://dx.doi.org/10.1038/s41522-020-00154-8
_version_ 1783603901316988928
author Varadarajan, Adithi R.
Allan, Raymond N.
Valentin, Jules D. P.
Castañeda Ocampo, Olga E.
Somerville, Vincent
Pietsch, Franziska
Buhmann, Matthias T.
West, Jonathan
Skipp, Paul J.
van der Mei, Henny C.
Ren, Qun
Schreiber, Frank
Webb, Jeremy S.
Ahrens, Christian H.
author_facet Varadarajan, Adithi R.
Allan, Raymond N.
Valentin, Jules D. P.
Castañeda Ocampo, Olga E.
Somerville, Vincent
Pietsch, Franziska
Buhmann, Matthias T.
West, Jonathan
Skipp, Paul J.
van der Mei, Henny C.
Ren, Qun
Schreiber, Frank
Webb, Jeremy S.
Ahrens, Christian H.
author_sort Varadarajan, Adithi R.
collection PubMed
description Pseudomonas aeruginosa MPAO1 is the parental strain of the widely utilized transposon mutant collection for this important clinical pathogen. Here, we validate a model system to identify genes involved in biofilm growth and biofilm-associated antibiotic resistance. Our model employs a genomics-driven workflow to assemble the complete MPAO1 genome, identify unique and conserved genes by comparative genomics with the PAO1 reference strain and genes missed within existing assemblies by proteogenomics. Among over 200 unique MPAO1 genes, we identified six general essential genes that were overlooked when mapping public Tn-seq data sets against PAO1, including an antitoxin. Genomic data were integrated with phenotypic data from an experimental workflow using a user-friendly, soft lithography-based microfluidic flow chamber for biofilm growth and a screen with the Tn-mutant library in microtiter plates. The screen identified hitherto unknown genes involved in biofilm growth and antibiotic resistance. Experiments conducted with the flow chamber across three laboratories delivered reproducible data on P. aeruginosa biofilms and validated the function of both known genes and genes identified in the Tn-mutant screens. Differential protein abundance data from planktonic cells versus biofilm confirmed the upregulation of candidates known to affect biofilm formation, of structural and secreted proteins of type VI secretion systems, and provided proteogenomic evidence for some missed MPAO1 genes. This integrated, broadly applicable model promises to improve the mechanistic understanding of biofilm formation, antimicrobial tolerance, and resistance evolution in biofilms.
format Online
Article
Text
id pubmed-7603352
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-76033522020-11-02 An integrated model system to gain mechanistic insights into biofilm-associated antimicrobial resistance in Pseudomonas aeruginosa MPAO1 Varadarajan, Adithi R. Allan, Raymond N. Valentin, Jules D. P. Castañeda Ocampo, Olga E. Somerville, Vincent Pietsch, Franziska Buhmann, Matthias T. West, Jonathan Skipp, Paul J. van der Mei, Henny C. Ren, Qun Schreiber, Frank Webb, Jeremy S. Ahrens, Christian H. NPJ Biofilms Microbiomes Article Pseudomonas aeruginosa MPAO1 is the parental strain of the widely utilized transposon mutant collection for this important clinical pathogen. Here, we validate a model system to identify genes involved in biofilm growth and biofilm-associated antibiotic resistance. Our model employs a genomics-driven workflow to assemble the complete MPAO1 genome, identify unique and conserved genes by comparative genomics with the PAO1 reference strain and genes missed within existing assemblies by proteogenomics. Among over 200 unique MPAO1 genes, we identified six general essential genes that were overlooked when mapping public Tn-seq data sets against PAO1, including an antitoxin. Genomic data were integrated with phenotypic data from an experimental workflow using a user-friendly, soft lithography-based microfluidic flow chamber for biofilm growth and a screen with the Tn-mutant library in microtiter plates. The screen identified hitherto unknown genes involved in biofilm growth and antibiotic resistance. Experiments conducted with the flow chamber across three laboratories delivered reproducible data on P. aeruginosa biofilms and validated the function of both known genes and genes identified in the Tn-mutant screens. Differential protein abundance data from planktonic cells versus biofilm confirmed the upregulation of candidates known to affect biofilm formation, of structural and secreted proteins of type VI secretion systems, and provided proteogenomic evidence for some missed MPAO1 genes. This integrated, broadly applicable model promises to improve the mechanistic understanding of biofilm formation, antimicrobial tolerance, and resistance evolution in biofilms. Nature Publishing Group UK 2020-10-30 /pmc/articles/PMC7603352/ /pubmed/33127897 http://dx.doi.org/10.1038/s41522-020-00154-8 Text en © The Author(s) 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Varadarajan, Adithi R.
Allan, Raymond N.
Valentin, Jules D. P.
Castañeda Ocampo, Olga E.
Somerville, Vincent
Pietsch, Franziska
Buhmann, Matthias T.
West, Jonathan
Skipp, Paul J.
van der Mei, Henny C.
Ren, Qun
Schreiber, Frank
Webb, Jeremy S.
Ahrens, Christian H.
An integrated model system to gain mechanistic insights into biofilm-associated antimicrobial resistance in Pseudomonas aeruginosa MPAO1
title An integrated model system to gain mechanistic insights into biofilm-associated antimicrobial resistance in Pseudomonas aeruginosa MPAO1
title_full An integrated model system to gain mechanistic insights into biofilm-associated antimicrobial resistance in Pseudomonas aeruginosa MPAO1
title_fullStr An integrated model system to gain mechanistic insights into biofilm-associated antimicrobial resistance in Pseudomonas aeruginosa MPAO1
title_full_unstemmed An integrated model system to gain mechanistic insights into biofilm-associated antimicrobial resistance in Pseudomonas aeruginosa MPAO1
title_short An integrated model system to gain mechanistic insights into biofilm-associated antimicrobial resistance in Pseudomonas aeruginosa MPAO1
title_sort integrated model system to gain mechanistic insights into biofilm-associated antimicrobial resistance in pseudomonas aeruginosa mpao1
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7603352/
https://www.ncbi.nlm.nih.gov/pubmed/33127897
http://dx.doi.org/10.1038/s41522-020-00154-8
work_keys_str_mv AT varadarajanadithir anintegratedmodelsystemtogainmechanisticinsightsintobiofilmassociatedantimicrobialresistanceinpseudomonasaeruginosampao1
AT allanraymondn anintegratedmodelsystemtogainmechanisticinsightsintobiofilmassociatedantimicrobialresistanceinpseudomonasaeruginosampao1
AT valentinjulesdp anintegratedmodelsystemtogainmechanisticinsightsintobiofilmassociatedantimicrobialresistanceinpseudomonasaeruginosampao1
AT castanedaocampoolgae anintegratedmodelsystemtogainmechanisticinsightsintobiofilmassociatedantimicrobialresistanceinpseudomonasaeruginosampao1
AT somervillevincent anintegratedmodelsystemtogainmechanisticinsightsintobiofilmassociatedantimicrobialresistanceinpseudomonasaeruginosampao1
AT pietschfranziska anintegratedmodelsystemtogainmechanisticinsightsintobiofilmassociatedantimicrobialresistanceinpseudomonasaeruginosampao1
AT buhmannmatthiast anintegratedmodelsystemtogainmechanisticinsightsintobiofilmassociatedantimicrobialresistanceinpseudomonasaeruginosampao1
AT westjonathan anintegratedmodelsystemtogainmechanisticinsightsintobiofilmassociatedantimicrobialresistanceinpseudomonasaeruginosampao1
AT skipppaulj anintegratedmodelsystemtogainmechanisticinsightsintobiofilmassociatedantimicrobialresistanceinpseudomonasaeruginosampao1
AT vandermeihennyc anintegratedmodelsystemtogainmechanisticinsightsintobiofilmassociatedantimicrobialresistanceinpseudomonasaeruginosampao1
AT renqun anintegratedmodelsystemtogainmechanisticinsightsintobiofilmassociatedantimicrobialresistanceinpseudomonasaeruginosampao1
AT schreiberfrank anintegratedmodelsystemtogainmechanisticinsightsintobiofilmassociatedantimicrobialresistanceinpseudomonasaeruginosampao1
AT webbjeremys anintegratedmodelsystemtogainmechanisticinsightsintobiofilmassociatedantimicrobialresistanceinpseudomonasaeruginosampao1
AT ahrenschristianh anintegratedmodelsystemtogainmechanisticinsightsintobiofilmassociatedantimicrobialresistanceinpseudomonasaeruginosampao1
AT varadarajanadithir integratedmodelsystemtogainmechanisticinsightsintobiofilmassociatedantimicrobialresistanceinpseudomonasaeruginosampao1
AT allanraymondn integratedmodelsystemtogainmechanisticinsightsintobiofilmassociatedantimicrobialresistanceinpseudomonasaeruginosampao1
AT valentinjulesdp integratedmodelsystemtogainmechanisticinsightsintobiofilmassociatedantimicrobialresistanceinpseudomonasaeruginosampao1
AT castanedaocampoolgae integratedmodelsystemtogainmechanisticinsightsintobiofilmassociatedantimicrobialresistanceinpseudomonasaeruginosampao1
AT somervillevincent integratedmodelsystemtogainmechanisticinsightsintobiofilmassociatedantimicrobialresistanceinpseudomonasaeruginosampao1
AT pietschfranziska integratedmodelsystemtogainmechanisticinsightsintobiofilmassociatedantimicrobialresistanceinpseudomonasaeruginosampao1
AT buhmannmatthiast integratedmodelsystemtogainmechanisticinsightsintobiofilmassociatedantimicrobialresistanceinpseudomonasaeruginosampao1
AT westjonathan integratedmodelsystemtogainmechanisticinsightsintobiofilmassociatedantimicrobialresistanceinpseudomonasaeruginosampao1
AT skipppaulj integratedmodelsystemtogainmechanisticinsightsintobiofilmassociatedantimicrobialresistanceinpseudomonasaeruginosampao1
AT vandermeihennyc integratedmodelsystemtogainmechanisticinsightsintobiofilmassociatedantimicrobialresistanceinpseudomonasaeruginosampao1
AT renqun integratedmodelsystemtogainmechanisticinsightsintobiofilmassociatedantimicrobialresistanceinpseudomonasaeruginosampao1
AT schreiberfrank integratedmodelsystemtogainmechanisticinsightsintobiofilmassociatedantimicrobialresistanceinpseudomonasaeruginosampao1
AT webbjeremys integratedmodelsystemtogainmechanisticinsightsintobiofilmassociatedantimicrobialresistanceinpseudomonasaeruginosampao1
AT ahrenschristianh integratedmodelsystemtogainmechanisticinsightsintobiofilmassociatedantimicrobialresistanceinpseudomonasaeruginosampao1