Cargando…
Mandibular shape prediction using cephalometric analysis: applications in craniofacial analysis, forensic anthropology and archaeological reconstruction
BACKGROUND: The human mandible is variable in shape, size and position and any deviation from normal can affect the facial appearance and dental occlusion. OBJECTIVES: The objectives of this study were to determine whether the Sassouni cephalometric analysis could help predict two-dimensional mandib...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Singapore
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7603441/ https://www.ncbi.nlm.nih.gov/pubmed/33296053 http://dx.doi.org/10.1186/s40902-020-00282-3 |
_version_ | 1783603919655534592 |
---|---|
author | Omran, Ahmed Wertheim, David Smith, Kathryn Liu, Ching Yiu Jessica Naini, Farhad B. |
author_facet | Omran, Ahmed Wertheim, David Smith, Kathryn Liu, Ching Yiu Jessica Naini, Farhad B. |
author_sort | Omran, Ahmed |
collection | PubMed |
description | BACKGROUND: The human mandible is variable in shape, size and position and any deviation from normal can affect the facial appearance and dental occlusion. OBJECTIVES: The objectives of this study were to determine whether the Sassouni cephalometric analysis could help predict two-dimensional mandibular shape in humans using cephalometric planes and landmarks. MATERIALS AND METHODS: A retrospective computerised analysis of 100 lateral cephalometric radiographs taken at Kingston Hospital Orthodontic Department was carried out. RESULTS: Results showed that the Euclidean straight-line mean difference between the estimated position of gonion and traced position of gonion was 7.89 mm and the Euclidean straight-line mean difference between the estimated position of pogonion and the traced position of pogonion was 11.15 mm. The length of the anterior cranial base as measured by sella-nasion was positively correlated with the length of the mandibular body gonion-menton, r = 0.381 and regression analysis showed the length of the anterior cranial base sella-nasion could be predictive of the length of the mandibular body gonion-menton by the equation 22.65 + 0.5426x, where x = length of the anterior cranial base (SN). There was a significant association with convex shaped palates and oblique shaped mandibles, p = 0.0004. CONCLUSIONS: The method described in this study can be used to help estimate the position of cephalometric points gonion and pogonion and thereby sagittal mandibular length. This method is more accurate in skeletal class I cases and therefore has potential applications in craniofacial anthropology and the ‘missing mandible’ problem in forensic and archaeological reconstruction. |
format | Online Article Text |
id | pubmed-7603441 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Springer Singapore |
record_format | MEDLINE/PubMed |
spelling | pubmed-76034412020-11-02 Mandibular shape prediction using cephalometric analysis: applications in craniofacial analysis, forensic anthropology and archaeological reconstruction Omran, Ahmed Wertheim, David Smith, Kathryn Liu, Ching Yiu Jessica Naini, Farhad B. Maxillofac Plast Reconstr Surg Research BACKGROUND: The human mandible is variable in shape, size and position and any deviation from normal can affect the facial appearance and dental occlusion. OBJECTIVES: The objectives of this study were to determine whether the Sassouni cephalometric analysis could help predict two-dimensional mandibular shape in humans using cephalometric planes and landmarks. MATERIALS AND METHODS: A retrospective computerised analysis of 100 lateral cephalometric radiographs taken at Kingston Hospital Orthodontic Department was carried out. RESULTS: Results showed that the Euclidean straight-line mean difference between the estimated position of gonion and traced position of gonion was 7.89 mm and the Euclidean straight-line mean difference between the estimated position of pogonion and the traced position of pogonion was 11.15 mm. The length of the anterior cranial base as measured by sella-nasion was positively correlated with the length of the mandibular body gonion-menton, r = 0.381 and regression analysis showed the length of the anterior cranial base sella-nasion could be predictive of the length of the mandibular body gonion-menton by the equation 22.65 + 0.5426x, where x = length of the anterior cranial base (SN). There was a significant association with convex shaped palates and oblique shaped mandibles, p = 0.0004. CONCLUSIONS: The method described in this study can be used to help estimate the position of cephalometric points gonion and pogonion and thereby sagittal mandibular length. This method is more accurate in skeletal class I cases and therefore has potential applications in craniofacial anthropology and the ‘missing mandible’ problem in forensic and archaeological reconstruction. Springer Singapore 2020-10-31 /pmc/articles/PMC7603441/ /pubmed/33296053 http://dx.doi.org/10.1186/s40902-020-00282-3 Text en © The Author(s) 2020 Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Research Omran, Ahmed Wertheim, David Smith, Kathryn Liu, Ching Yiu Jessica Naini, Farhad B. Mandibular shape prediction using cephalometric analysis: applications in craniofacial analysis, forensic anthropology and archaeological reconstruction |
title | Mandibular shape prediction using cephalometric analysis: applications in craniofacial analysis, forensic anthropology and archaeological reconstruction |
title_full | Mandibular shape prediction using cephalometric analysis: applications in craniofacial analysis, forensic anthropology and archaeological reconstruction |
title_fullStr | Mandibular shape prediction using cephalometric analysis: applications in craniofacial analysis, forensic anthropology and archaeological reconstruction |
title_full_unstemmed | Mandibular shape prediction using cephalometric analysis: applications in craniofacial analysis, forensic anthropology and archaeological reconstruction |
title_short | Mandibular shape prediction using cephalometric analysis: applications in craniofacial analysis, forensic anthropology and archaeological reconstruction |
title_sort | mandibular shape prediction using cephalometric analysis: applications in craniofacial analysis, forensic anthropology and archaeological reconstruction |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7603441/ https://www.ncbi.nlm.nih.gov/pubmed/33296053 http://dx.doi.org/10.1186/s40902-020-00282-3 |
work_keys_str_mv | AT omranahmed mandibularshapepredictionusingcephalometricanalysisapplicationsincraniofacialanalysisforensicanthropologyandarchaeologicalreconstruction AT wertheimdavid mandibularshapepredictionusingcephalometricanalysisapplicationsincraniofacialanalysisforensicanthropologyandarchaeologicalreconstruction AT smithkathryn mandibularshapepredictionusingcephalometricanalysisapplicationsincraniofacialanalysisforensicanthropologyandarchaeologicalreconstruction AT liuchingyiujessica mandibularshapepredictionusingcephalometricanalysisapplicationsincraniofacialanalysisforensicanthropologyandarchaeologicalreconstruction AT nainifarhadb mandibularshapepredictionusingcephalometricanalysisapplicationsincraniofacialanalysisforensicanthropologyandarchaeologicalreconstruction |