Cargando…

Peptides from Animal Origin: A Systematic Review on Biological Sources and Effects on Skin Wounds

BACKGROUND: Skin wounds are closely correlated with opportunistic infections and sepsis risk. Due to the need of more efficient healing drugs, animal peptides are emerging as new molecular platforms to accelerate skin wound closure and to prevent and control bacterial infection. AIM: The aim of this...

Descripción completa

Detalles Bibliográficos
Autores principales: Alves, Raul Santos, Alves, Levy Bueno, Altoé, Luciana Schulthais, Sarandy, Mariáurea Matias, Freitas, Mariella Bontempo, Silveira, Nelson José Freitas, Novaes, Rômulo Dias, Gonçalves, Reggiani Vilela
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7603624/
https://www.ncbi.nlm.nih.gov/pubmed/33149808
http://dx.doi.org/10.1155/2020/4352761
Descripción
Sumario:BACKGROUND: Skin wounds are closely correlated with opportunistic infections and sepsis risk. Due to the need of more efficient healing drugs, animal peptides are emerging as new molecular platforms to accelerate skin wound closure and to prevent and control bacterial infection. AIM: The aim of this study was to evaluate the preclinical evidence on the impact of animal peptides on skin wound healing. In addition, we carried out a critical analysis of the studies' methodological quality. Main Methods. This systematic review was performed according to the PRISMA guidelines, using a structured search on the PubMed-Medline, Scopus, and Web of Science platforms to retrieve studies published until August 25, 2020 at 3 : 00 pm. The studies included were limited to those that used animal models, investigated the effect of animal peptides with no association with other compounds on wound healing, and that were published in English. Bias analysis and methodological quality assessments were examined through the SYRCLE's RoB tool. RESULTS: Thirty studies were identified using the PRISMA workflow. In general, animal peptides were effective in accelerating skin wound healing, especially by increasing cellular proliferation, neoangiogenesis, colagenogenesis, and reepithelialization. Considering standardized methodological quality indicators, we identified a marked heterogeneity in research protocols and a high risk of bias associated with limited characterization of the experimental designs. CONCLUSION: Animal peptides show a remarkable healing potential with biotechnological relevance for regenerative medicine. However, rigorous experimental approaches are still required to clearly delimit the mechanisms underlying the healing effects and the risk-benefit ratio attributed to peptide-based treatments.