Cargando…

A Landscape of Murine Long Non-Coding RNAs Reveals the Leading Transcriptome Alterations in Adipose Tissue during Aging

Aging is an inevitable process that involves profound physiological changes. Long non-coding RNAs (lncRNAs) are emerging as important regulators in various biological processes but are not systemically studied in aging. To provide an organism-wide lncRNA landscape during aging, we conduct comprehens...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhou, Qiuzhong, Wan, Qianfen, Jiang, Yuxi, Liu, Jin, Qiang, Li, Sun, Lei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7603645/
https://www.ncbi.nlm.nih.gov/pubmed/32460027
http://dx.doi.org/10.1016/j.celrep.2020.107694
Descripción
Sumario:Aging is an inevitable process that involves profound physiological changes. Long non-coding RNAs (lncRNAs) are emerging as important regulators in various biological processes but are not systemically studied in aging. To provide an organism-wide lncRNA landscape during aging, we conduct comprehensive RNA sequencing (RNA-seq) analyses across the mouse lifespan. Of the 1,675 aging-regulated lncRNAs (AR-lncRNAs) identified, the majority are connected to inflammation-related biological pathways. AR-lncRNAs exhibit high tissue specificity; conversely, those with higher tissue specificity are preferentially regulated during aging. White adipose tissue (WAT) displays the highest number of AR-lncRNAs and develops the most dynamic crosstalk between AR-lncRNA and AR-mRNA during aging. An adipose-enriched AR-lncRNA, lnc-adipoAR1, is negatively correlated with aging, and knocking it down inhibits adipogenesis, phenocopying the compromised adipogenic capacity of aged fat. Our works together reveal AR-lncRNAs as essential components in aging and suggest that although each tissue ages in a distinct manner, WAT is a leading contributor to aging-related health decline.