Cargando…

Upregulation of PD-L1 expression promotes epithelial-to-mesenchymal transition in sorafenib-resistant hepatocellular carcinoma cells

BACKGROUND: The epithelial-to-mesenchymal transition (EMT) status is associated with programmed death-1 ligand 1 (PD-L1) expression in various cancers. However, the role and molecular mechanism of PD-L1 in the EMT of sorafenib-resistant hepatocellular carcinoma (HCC) cells remain elusive. In this st...

Descripción completa

Detalles Bibliográficos
Autores principales: Xu, Gui-Li, Ni, Cai-Fang, Liang, Han-Si, Xu, Yun-Hua, Wang, Wan-Sheng, Shen, Jian, Li, Ming-Ming, Zhu, Xiao-Li
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7603871/
https://www.ncbi.nlm.nih.gov/pubmed/33163195
http://dx.doi.org/10.1093/gastro/goaa049
Descripción
Sumario:BACKGROUND: The epithelial-to-mesenchymal transition (EMT) status is associated with programmed death-1 ligand 1 (PD-L1) expression in various cancers. However, the role and molecular mechanism of PD-L1 in the EMT of sorafenib-resistant hepatocellular carcinoma (HCC) cells remain elusive. In this study, we aimed to investigate the regulation of PD-L1 on the EMT in sorafenib-resistant HCC cells. METHODS: Initially, the sorafenib-resistant HCC cell lines HepG2 SR and Huh7 SR were established. Western-blot assays were used to detect the expression of PD-L1, E-cadherin, and N-cadherin. The intervention and overexpression of PD-L1 were used to explore the role of PD-L1 in the regulation of EMT in HepG2 SR and Huh7 SR cells. Cell migration and invasion were assessed by transwell assays. PD-L1 or Sterol regulatory element-binding protein 1 (SREBP-1) overexpression and knock-down were performed in order to study the mechanism of PD-L1 in sorafenib-resistant HCC cells. RESULTS: PD-L1 expression was upregulated, whereas E-cadherin levels were downregulated and N-cadherin expression was increased in HepG2 SR and Huh7 SR cells. The cell viabilities of HepG2 and Huh7 cells were lower than those of HepG2 SR and Huh7 SR cells. PD-L1 overexpression reduced E-cadherin expression and increased N-cadherin levels, whereas PD-L1 knock-down increased E-cadherin expression and decreased N-cadherin expression. PD-L1 expression promoted EMT and the migratory and invasive abilities of HepG2 SR and Huh7 SR cells. PD-L1 promoted the EMT of sorafenib-resistant HCC cells via the PI3K/Akt pathway by activating SREBP-1 expression in HepG2 SR and Huh7 SR cells. CONCLUSIONS: The findings reveal that PD-L1 expression promotes EMT of sorafenib-resistant HCC cells.