Cargando…
Deep learning-based forecasting model for COVID-19 outbreak in Saudi Arabia
COVID-19 outbreak has become a global pandemic that affected more than 200 countries. Predicting the epidemiological behavior of this outbreak has a vital role to prevent its spreading. In this study, long short-term memory (LSTM) network as a robust deep learning model is proposed to forecast the n...
Autores principales: | Elsheikh, Ammar H., Saba, Amal I., Elaziz, Mohamed Abd, Lu, Songfeng, Shanmugan, S., Muthuramalingam, T., Kumar, Ravinder, Mosleh, Ahmed O., Essa, F.A., Shehabeldeen, Taher A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Institution of Chemical Engineers. Published by Elsevier B.V.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7604086/ https://www.ncbi.nlm.nih.gov/pubmed/33162687 http://dx.doi.org/10.1016/j.psep.2020.10.048 |
Ejemplares similares
-
Efficient artificial intelligence forecasting models for COVID-19 outbreak in Russia and Brazil
por: Al-qaness, Mohammed A.A., et al.
Publicado: (2021) -
Artificial Intelligence for Forecasting the Prevalence of COVID-19 Pandemic: An Overview
por: Elsheikh, Ammar H., et al.
Publicado: (2021) -
Forecasting the prevalence of COVID-19 outbreak in Egypt using nonlinear autoregressive artificial neural networks
por: Saba, Amal I., et al.
Publicado: (2020) -
Boosting COVID-19 Image Classification Using MobileNetV3 and Aquila Optimizer Algorithm
por: Abd Elaziz, Mohamed, et al.
Publicado: (2021) -
Admission temperature and neonatal outcomes - single-centre experience in Saudi Arabia
por: Fneish, Ammar, et al.
Publicado: (2022)