Cargando…
Physics successfully implements Lagrange multiplier optimization
Optimization is a major part of human effort. While being mathematical, optimization is also built into physics. For example, physics has the Principle of Least Action; the Principle of Minimum Power Dissipation, also called Minimum Entropy Generation; and the Variational Principle. Physics also has...
Autores principales: | Vadlamani, Sri Krishna, Xiao, Tianyao Patrick, Yablonovitch, Eli |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7604416/ https://www.ncbi.nlm.nih.gov/pubmed/33046659 http://dx.doi.org/10.1073/pnas.2015192117 |
Ejemplares similares
-
Constrained optimization and Lagrange multiplier methods
por: Bertsekas, Dimitri P, et al.
Publicado: (1982) -
Uncertainties of Predictions from Parton Distribution Functions: 1, the Lagrange Multiplier Method
por: Stump, D., et al.
Publicado: (2001) -
Solving Stochastic Reaction Networks with Maximum Entropy Lagrange Multipliers
por: Vlysidis, Michail, et al.
Publicado: (2018) -
A kinematical constrained fit using the Lagrange multipliers method
por: Saborido, J
Publicado: (1998) -
An Optimized Two-Step Magnetic Correction Strategy by Means of a Lagrange Multiplier Estimator with an Ellipsoid Constraint
por: Xia, Linlin, et al.
Publicado: (2018)