Cargando…
Novel aptamer to von Willebrand factor A1 domain (TAGX-0004) shows total inhibition of thrombus formation superior to ARC1779 and comparable to caplacizumab
Von Willebrand factor (VWF) is a blood glycoprotein that plays an important role in platelet thrombus formation through interaction between its A1 domain and platelet glycoprotein Ib. ARC1779, an aptamer to the VWF A1 domain, was evaluated in a clinical trial for acquired thrombotic thrombocytopenic...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Fondazione Ferrata Storti
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7604614/ https://www.ncbi.nlm.nih.gov/pubmed/33131252 http://dx.doi.org/10.3324/haematol.2019.235549 |
_version_ | 1783604176416145408 |
---|---|
author | Sakai, Kazuya Someya, Tatsuhiko Harada, Kaori Yagi, Hideo Matsui, Taei Matsumoto, Masanori |
author_facet | Sakai, Kazuya Someya, Tatsuhiko Harada, Kaori Yagi, Hideo Matsui, Taei Matsumoto, Masanori |
author_sort | Sakai, Kazuya |
collection | PubMed |
description | Von Willebrand factor (VWF) is a blood glycoprotein that plays an important role in platelet thrombus formation through interaction between its A1 domain and platelet glycoprotein Ib. ARC1779, an aptamer to the VWF A1 domain, was evaluated in a clinical trial for acquired thrombotic thrombocytopenic purpura (aTTP). Subsequently, caplacizumab, an anti-VWF A1 domain nanobody, was approved for aTTP in Europe and the USA. We recently developed a novel DNA aptamer, TAGX-0004, to the VWF A1 domain; it contains an artificial base and demonstrates high affinity for VWF. To compare the effects of these three agents on VWF A1, their ability to inhibit ristocetin- or botrocetin-induced platelet aggregation under static conditions was analyzed, and the inhibition of thrombus formation under high shear stress was investigated in a microchip flow chamber system. In both assays, TAGX-0004 showed stronger inhibition than ARC1779, and had comparable inhibitory effects to caplacizumab. The binding sites of TAGX-0004 and ARC1779 were analyzed with surface plasmon resonance performed using alanine scanning mutagenesis of the VWF A1 domain. An electrophoretic mobility shift assay showed that R1395 and R1399 in the A1 domain bound to both aptamers. R1287, K1362, and R1392 contributed to ARC1779 binding, and F1366 was essential for TAGX-0004 binding. Surface plasmon resonance analysis of the binding sites of caplacizumab identified five amino acids in the VWF A1 domain (K1362, R1392, R1395, R1399, and K1406). These results suggest that TAGX-0004 possesses better pharmacological properties than caplacizumab in vitro and might be similarly promising for aTTP treatment. |
format | Online Article Text |
id | pubmed-7604614 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Fondazione Ferrata Storti |
record_format | MEDLINE/PubMed |
spelling | pubmed-76046142020-11-06 Novel aptamer to von Willebrand factor A1 domain (TAGX-0004) shows total inhibition of thrombus formation superior to ARC1779 and comparable to caplacizumab Sakai, Kazuya Someya, Tatsuhiko Harada, Kaori Yagi, Hideo Matsui, Taei Matsumoto, Masanori Haematologica Article Von Willebrand factor (VWF) is a blood glycoprotein that plays an important role in platelet thrombus formation through interaction between its A1 domain and platelet glycoprotein Ib. ARC1779, an aptamer to the VWF A1 domain, was evaluated in a clinical trial for acquired thrombotic thrombocytopenic purpura (aTTP). Subsequently, caplacizumab, an anti-VWF A1 domain nanobody, was approved for aTTP in Europe and the USA. We recently developed a novel DNA aptamer, TAGX-0004, to the VWF A1 domain; it contains an artificial base and demonstrates high affinity for VWF. To compare the effects of these three agents on VWF A1, their ability to inhibit ristocetin- or botrocetin-induced platelet aggregation under static conditions was analyzed, and the inhibition of thrombus formation under high shear stress was investigated in a microchip flow chamber system. In both assays, TAGX-0004 showed stronger inhibition than ARC1779, and had comparable inhibitory effects to caplacizumab. The binding sites of TAGX-0004 and ARC1779 were analyzed with surface plasmon resonance performed using alanine scanning mutagenesis of the VWF A1 domain. An electrophoretic mobility shift assay showed that R1395 and R1399 in the A1 domain bound to both aptamers. R1287, K1362, and R1392 contributed to ARC1779 binding, and F1366 was essential for TAGX-0004 binding. Surface plasmon resonance analysis of the binding sites of caplacizumab identified five amino acids in the VWF A1 domain (K1362, R1392, R1395, R1399, and K1406). These results suggest that TAGX-0004 possesses better pharmacological properties than caplacizumab in vitro and might be similarly promising for aTTP treatment. Fondazione Ferrata Storti 2019-12-19 /pmc/articles/PMC7604614/ /pubmed/33131252 http://dx.doi.org/10.3324/haematol.2019.235549 Text en Copyright© 2020 Ferrata Storti Foundation http://creativecommons.org/licenses/by-nc/4.0/ This article is distributed under the terms of the Creative Commons Attribution Noncommercial License (by-nc 4.0) which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited. |
spellingShingle | Article Sakai, Kazuya Someya, Tatsuhiko Harada, Kaori Yagi, Hideo Matsui, Taei Matsumoto, Masanori Novel aptamer to von Willebrand factor A1 domain (TAGX-0004) shows total inhibition of thrombus formation superior to ARC1779 and comparable to caplacizumab |
title | Novel aptamer to von Willebrand factor A1 domain (TAGX-0004) shows total inhibition of thrombus formation superior to ARC1779 and comparable to caplacizumab |
title_full | Novel aptamer to von Willebrand factor A1 domain (TAGX-0004) shows total inhibition of thrombus formation superior to ARC1779 and comparable to caplacizumab |
title_fullStr | Novel aptamer to von Willebrand factor A1 domain (TAGX-0004) shows total inhibition of thrombus formation superior to ARC1779 and comparable to caplacizumab |
title_full_unstemmed | Novel aptamer to von Willebrand factor A1 domain (TAGX-0004) shows total inhibition of thrombus formation superior to ARC1779 and comparable to caplacizumab |
title_short | Novel aptamer to von Willebrand factor A1 domain (TAGX-0004) shows total inhibition of thrombus formation superior to ARC1779 and comparable to caplacizumab |
title_sort | novel aptamer to von willebrand factor a1 domain (tagx-0004) shows total inhibition of thrombus formation superior to arc1779 and comparable to caplacizumab |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7604614/ https://www.ncbi.nlm.nih.gov/pubmed/33131252 http://dx.doi.org/10.3324/haematol.2019.235549 |
work_keys_str_mv | AT sakaikazuya novelaptamertovonwillebrandfactora1domaintagx0004showstotalinhibitionofthrombusformationsuperiortoarc1779andcomparabletocaplacizumab AT someyatatsuhiko novelaptamertovonwillebrandfactora1domaintagx0004showstotalinhibitionofthrombusformationsuperiortoarc1779andcomparabletocaplacizumab AT haradakaori novelaptamertovonwillebrandfactora1domaintagx0004showstotalinhibitionofthrombusformationsuperiortoarc1779andcomparabletocaplacizumab AT yagihideo novelaptamertovonwillebrandfactora1domaintagx0004showstotalinhibitionofthrombusformationsuperiortoarc1779andcomparabletocaplacizumab AT matsuitaei novelaptamertovonwillebrandfactora1domaintagx0004showstotalinhibitionofthrombusformationsuperiortoarc1779andcomparabletocaplacizumab AT matsumotomasanori novelaptamertovonwillebrandfactora1domaintagx0004showstotalinhibitionofthrombusformationsuperiortoarc1779andcomparabletocaplacizumab |