Cargando…
BAFFR controls early memory B cell responses but is dispensable for germinal center function
The TNF superfamily ligand BAFF maintains the survival of naive B cells by signaling through its surface receptor, BAFFR. Activated B cells maintain expression of BAFFR after they differentiate into germinal center (GC) or memory B cells (MBCs). However, the functions of BAFFR in these antigen-exper...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Rockefeller University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7604765/ https://www.ncbi.nlm.nih.gov/pubmed/33119033 http://dx.doi.org/10.1084/jem.20191167 |
Sumario: | The TNF superfamily ligand BAFF maintains the survival of naive B cells by signaling through its surface receptor, BAFFR. Activated B cells maintain expression of BAFFR after they differentiate into germinal center (GC) or memory B cells (MBCs). However, the functions of BAFFR in these antigen-experienced B cell populations remain unclear. Here, we show that B cell–intrinsic BAFFR does not play a significant role in the survival or function of GC B cells or in the generation of the somatically mutated MBCs derived from them. Instead, BAFF/BAFFR signaling was required to generate the unmutated, GC-independent MBCs that differentiate directly from activated B cell blasts early in the response. Furthermore, amplification of BAFFR signaling in responding B cells did not affect GCs or the generation of GC-derived MBCs but greatly expanded the GC-independent MBC response. Although BAFF/BAFFR signaling specifically controlled the formation of the GC-independent MBC response, both types of MBCs required input from this pathway for optimal long-term survival. |
---|