Cargando…

External validation of prognostic models predicting pre-eclampsia: individual participant data meta-analysis

BACKGROUND: Pre-eclampsia is a leading cause of maternal and perinatal mortality and morbidity. Early identification of women at risk during pregnancy is required to plan management. Although there are many published prediction models for pre-eclampsia, few have been validated in external data. Our...

Descripción completa

Detalles Bibliográficos
Autores principales: Snell, Kym I. E., Allotey, John, Smuk, Melanie, Hooper, Richard, Chan, Claire, Ahmed, Asif, Chappell, Lucy C., Von Dadelszen, Peter, Green, Marcus, Kenny, Louise, Khalil, Asma, Khan, Khalid S., Mol, Ben W., Myers, Jenny, Poston, Lucilla, Thilaganathan, Basky, Staff, Anne C., Smith, Gordon C. S., Ganzevoort, Wessel, Laivuori, Hannele, Odibo, Anthony O., Arenas Ramírez, Javier, Kingdom, John, Daskalakis, George, Farrar, Diane, Baschat, Ahmet A., Seed, Paul T., Prefumo, Federico, da Silva Costa, Fabricio, Groen, Henk, Audibert, Francois, Masse, Jacques, Skråstad, Ragnhild B., Salvesen, Kjell Å., Haavaldsen, Camilla, Nagata, Chie, Rumbold, Alice R., Heinonen, Seppo, Askie, Lisa M., Smits, Luc J. M., Vinter, Christina A., Magnus, Per, Eero, Kajantie, Villa, Pia M., Jenum, Anne K., Andersen, Louise B., Norman, Jane E., Ohkuchi, Akihide, Eskild, Anne, Bhattacharya, Sohinee, McAuliffe, Fionnuala M., Galindo, Alberto, Herraiz, Ignacio, Carbillon, Lionel, Klipstein-Grobusch, Kerstin, Yeo, Seon Ae, Browne, Joyce L., Moons, Karel G. M., Riley, Richard D., Thangaratinam, Shakila
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7604970/
https://www.ncbi.nlm.nih.gov/pubmed/33131506
http://dx.doi.org/10.1186/s12916-020-01766-9
_version_ 1783604226617769984
author Snell, Kym I. E.
Allotey, John
Smuk, Melanie
Hooper, Richard
Chan, Claire
Ahmed, Asif
Chappell, Lucy C.
Von Dadelszen, Peter
Green, Marcus
Kenny, Louise
Khalil, Asma
Khan, Khalid S.
Mol, Ben W.
Myers, Jenny
Poston, Lucilla
Thilaganathan, Basky
Staff, Anne C.
Smith, Gordon C. S.
Ganzevoort, Wessel
Laivuori, Hannele
Odibo, Anthony O.
Arenas Ramírez, Javier
Kingdom, John
Daskalakis, George
Farrar, Diane
Baschat, Ahmet A.
Seed, Paul T.
Prefumo, Federico
da Silva Costa, Fabricio
Groen, Henk
Audibert, Francois
Masse, Jacques
Skråstad, Ragnhild B.
Salvesen, Kjell Å.
Haavaldsen, Camilla
Nagata, Chie
Rumbold, Alice R.
Heinonen, Seppo
Askie, Lisa M.
Smits, Luc J. M.
Vinter, Christina A.
Magnus, Per
Eero, Kajantie
Villa, Pia M.
Jenum, Anne K.
Andersen, Louise B.
Norman, Jane E.
Ohkuchi, Akihide
Eskild, Anne
Bhattacharya, Sohinee
McAuliffe, Fionnuala M.
Galindo, Alberto
Herraiz, Ignacio
Carbillon, Lionel
Klipstein-Grobusch, Kerstin
Yeo, Seon Ae
Browne, Joyce L.
Moons, Karel G. M.
Riley, Richard D.
Thangaratinam, Shakila
author_facet Snell, Kym I. E.
Allotey, John
Smuk, Melanie
Hooper, Richard
Chan, Claire
Ahmed, Asif
Chappell, Lucy C.
Von Dadelszen, Peter
Green, Marcus
Kenny, Louise
Khalil, Asma
Khan, Khalid S.
Mol, Ben W.
Myers, Jenny
Poston, Lucilla
Thilaganathan, Basky
Staff, Anne C.
Smith, Gordon C. S.
Ganzevoort, Wessel
Laivuori, Hannele
Odibo, Anthony O.
Arenas Ramírez, Javier
Kingdom, John
Daskalakis, George
Farrar, Diane
Baschat, Ahmet A.
Seed, Paul T.
Prefumo, Federico
da Silva Costa, Fabricio
Groen, Henk
Audibert, Francois
Masse, Jacques
Skråstad, Ragnhild B.
Salvesen, Kjell Å.
Haavaldsen, Camilla
Nagata, Chie
Rumbold, Alice R.
Heinonen, Seppo
Askie, Lisa M.
Smits, Luc J. M.
Vinter, Christina A.
Magnus, Per
Eero, Kajantie
Villa, Pia M.
Jenum, Anne K.
Andersen, Louise B.
Norman, Jane E.
Ohkuchi, Akihide
Eskild, Anne
Bhattacharya, Sohinee
McAuliffe, Fionnuala M.
Galindo, Alberto
Herraiz, Ignacio
Carbillon, Lionel
Klipstein-Grobusch, Kerstin
Yeo, Seon Ae
Browne, Joyce L.
Moons, Karel G. M.
Riley, Richard D.
Thangaratinam, Shakila
author_sort Snell, Kym I. E.
collection PubMed
description BACKGROUND: Pre-eclampsia is a leading cause of maternal and perinatal mortality and morbidity. Early identification of women at risk during pregnancy is required to plan management. Although there are many published prediction models for pre-eclampsia, few have been validated in external data. Our objective was to externally validate published prediction models for pre-eclampsia using individual participant data (IPD) from UK studies, to evaluate whether any of the models can accurately predict the condition when used within the UK healthcare setting. METHODS: IPD from 11 UK cohort studies (217,415 pregnant women) within the International Prediction of Pregnancy Complications (IPPIC) pre-eclampsia network contributed to external validation of published prediction models, identified by systematic review. Cohorts that measured all predictor variables in at least one of the identified models and reported pre-eclampsia as an outcome were included for validation. We reported the model predictive performance as discrimination (C-statistic), calibration (calibration plots, calibration slope, calibration-in-the-large), and net benefit. Performance measures were estimated separately in each available study and then, where possible, combined across studies in a random-effects meta-analysis. RESULTS: Of 131 published models, 67 provided the full model equation and 24 could be validated in 11 UK cohorts. Most of the models showed modest discrimination with summary C-statistics between 0.6 and 0.7. The calibration of the predicted compared to observed risk was generally poor for most models with observed calibration slopes less than 1, indicating that predictions were generally too extreme, although confidence intervals were wide. There was large between-study heterogeneity in each model’s calibration-in-the-large, suggesting poor calibration of the predicted overall risk across populations. In a subset of models, the net benefit of using the models to inform clinical decisions appeared small and limited to probability thresholds between 5 and 7%. CONCLUSIONS: The evaluated models had modest predictive performance, with key limitations such as poor calibration (likely due to overfitting in the original development datasets), substantial heterogeneity, and small net benefit across settings. The evidence to support the use of these prediction models for pre-eclampsia in clinical decision-making is limited. Any models that we could not validate should be examined in terms of their predictive performance, net benefit, and heterogeneity across multiple UK settings before consideration for use in practice. TRIAL REGISTRATION: PROSPERO ID: CRD42015029349.
format Online
Article
Text
id pubmed-7604970
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-76049702020-11-03 External validation of prognostic models predicting pre-eclampsia: individual participant data meta-analysis Snell, Kym I. E. Allotey, John Smuk, Melanie Hooper, Richard Chan, Claire Ahmed, Asif Chappell, Lucy C. Von Dadelszen, Peter Green, Marcus Kenny, Louise Khalil, Asma Khan, Khalid S. Mol, Ben W. Myers, Jenny Poston, Lucilla Thilaganathan, Basky Staff, Anne C. Smith, Gordon C. S. Ganzevoort, Wessel Laivuori, Hannele Odibo, Anthony O. Arenas Ramírez, Javier Kingdom, John Daskalakis, George Farrar, Diane Baschat, Ahmet A. Seed, Paul T. Prefumo, Federico da Silva Costa, Fabricio Groen, Henk Audibert, Francois Masse, Jacques Skråstad, Ragnhild B. Salvesen, Kjell Å. Haavaldsen, Camilla Nagata, Chie Rumbold, Alice R. Heinonen, Seppo Askie, Lisa M. Smits, Luc J. M. Vinter, Christina A. Magnus, Per Eero, Kajantie Villa, Pia M. Jenum, Anne K. Andersen, Louise B. Norman, Jane E. Ohkuchi, Akihide Eskild, Anne Bhattacharya, Sohinee McAuliffe, Fionnuala M. Galindo, Alberto Herraiz, Ignacio Carbillon, Lionel Klipstein-Grobusch, Kerstin Yeo, Seon Ae Browne, Joyce L. Moons, Karel G. M. Riley, Richard D. Thangaratinam, Shakila BMC Med Research Article BACKGROUND: Pre-eclampsia is a leading cause of maternal and perinatal mortality and morbidity. Early identification of women at risk during pregnancy is required to plan management. Although there are many published prediction models for pre-eclampsia, few have been validated in external data. Our objective was to externally validate published prediction models for pre-eclampsia using individual participant data (IPD) from UK studies, to evaluate whether any of the models can accurately predict the condition when used within the UK healthcare setting. METHODS: IPD from 11 UK cohort studies (217,415 pregnant women) within the International Prediction of Pregnancy Complications (IPPIC) pre-eclampsia network contributed to external validation of published prediction models, identified by systematic review. Cohorts that measured all predictor variables in at least one of the identified models and reported pre-eclampsia as an outcome were included for validation. We reported the model predictive performance as discrimination (C-statistic), calibration (calibration plots, calibration slope, calibration-in-the-large), and net benefit. Performance measures were estimated separately in each available study and then, where possible, combined across studies in a random-effects meta-analysis. RESULTS: Of 131 published models, 67 provided the full model equation and 24 could be validated in 11 UK cohorts. Most of the models showed modest discrimination with summary C-statistics between 0.6 and 0.7. The calibration of the predicted compared to observed risk was generally poor for most models with observed calibration slopes less than 1, indicating that predictions were generally too extreme, although confidence intervals were wide. There was large between-study heterogeneity in each model’s calibration-in-the-large, suggesting poor calibration of the predicted overall risk across populations. In a subset of models, the net benefit of using the models to inform clinical decisions appeared small and limited to probability thresholds between 5 and 7%. CONCLUSIONS: The evaluated models had modest predictive performance, with key limitations such as poor calibration (likely due to overfitting in the original development datasets), substantial heterogeneity, and small net benefit across settings. The evidence to support the use of these prediction models for pre-eclampsia in clinical decision-making is limited. Any models that we could not validate should be examined in terms of their predictive performance, net benefit, and heterogeneity across multiple UK settings before consideration for use in practice. TRIAL REGISTRATION: PROSPERO ID: CRD42015029349. BioMed Central 2020-11-02 /pmc/articles/PMC7604970/ /pubmed/33131506 http://dx.doi.org/10.1186/s12916-020-01766-9 Text en © The Author(s) 2020 Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
spellingShingle Research Article
Snell, Kym I. E.
Allotey, John
Smuk, Melanie
Hooper, Richard
Chan, Claire
Ahmed, Asif
Chappell, Lucy C.
Von Dadelszen, Peter
Green, Marcus
Kenny, Louise
Khalil, Asma
Khan, Khalid S.
Mol, Ben W.
Myers, Jenny
Poston, Lucilla
Thilaganathan, Basky
Staff, Anne C.
Smith, Gordon C. S.
Ganzevoort, Wessel
Laivuori, Hannele
Odibo, Anthony O.
Arenas Ramírez, Javier
Kingdom, John
Daskalakis, George
Farrar, Diane
Baschat, Ahmet A.
Seed, Paul T.
Prefumo, Federico
da Silva Costa, Fabricio
Groen, Henk
Audibert, Francois
Masse, Jacques
Skråstad, Ragnhild B.
Salvesen, Kjell Å.
Haavaldsen, Camilla
Nagata, Chie
Rumbold, Alice R.
Heinonen, Seppo
Askie, Lisa M.
Smits, Luc J. M.
Vinter, Christina A.
Magnus, Per
Eero, Kajantie
Villa, Pia M.
Jenum, Anne K.
Andersen, Louise B.
Norman, Jane E.
Ohkuchi, Akihide
Eskild, Anne
Bhattacharya, Sohinee
McAuliffe, Fionnuala M.
Galindo, Alberto
Herraiz, Ignacio
Carbillon, Lionel
Klipstein-Grobusch, Kerstin
Yeo, Seon Ae
Browne, Joyce L.
Moons, Karel G. M.
Riley, Richard D.
Thangaratinam, Shakila
External validation of prognostic models predicting pre-eclampsia: individual participant data meta-analysis
title External validation of prognostic models predicting pre-eclampsia: individual participant data meta-analysis
title_full External validation of prognostic models predicting pre-eclampsia: individual participant data meta-analysis
title_fullStr External validation of prognostic models predicting pre-eclampsia: individual participant data meta-analysis
title_full_unstemmed External validation of prognostic models predicting pre-eclampsia: individual participant data meta-analysis
title_short External validation of prognostic models predicting pre-eclampsia: individual participant data meta-analysis
title_sort external validation of prognostic models predicting pre-eclampsia: individual participant data meta-analysis
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7604970/
https://www.ncbi.nlm.nih.gov/pubmed/33131506
http://dx.doi.org/10.1186/s12916-020-01766-9
work_keys_str_mv AT snellkymie externalvalidationofprognosticmodelspredictingpreeclampsiaindividualparticipantdatametaanalysis
AT alloteyjohn externalvalidationofprognosticmodelspredictingpreeclampsiaindividualparticipantdatametaanalysis
AT smukmelanie externalvalidationofprognosticmodelspredictingpreeclampsiaindividualparticipantdatametaanalysis
AT hooperrichard externalvalidationofprognosticmodelspredictingpreeclampsiaindividualparticipantdatametaanalysis
AT chanclaire externalvalidationofprognosticmodelspredictingpreeclampsiaindividualparticipantdatametaanalysis
AT ahmedasif externalvalidationofprognosticmodelspredictingpreeclampsiaindividualparticipantdatametaanalysis
AT chappelllucyc externalvalidationofprognosticmodelspredictingpreeclampsiaindividualparticipantdatametaanalysis
AT vondadelszenpeter externalvalidationofprognosticmodelspredictingpreeclampsiaindividualparticipantdatametaanalysis
AT greenmarcus externalvalidationofprognosticmodelspredictingpreeclampsiaindividualparticipantdatametaanalysis
AT kennylouise externalvalidationofprognosticmodelspredictingpreeclampsiaindividualparticipantdatametaanalysis
AT khalilasma externalvalidationofprognosticmodelspredictingpreeclampsiaindividualparticipantdatametaanalysis
AT khankhalids externalvalidationofprognosticmodelspredictingpreeclampsiaindividualparticipantdatametaanalysis
AT molbenw externalvalidationofprognosticmodelspredictingpreeclampsiaindividualparticipantdatametaanalysis
AT myersjenny externalvalidationofprognosticmodelspredictingpreeclampsiaindividualparticipantdatametaanalysis
AT postonlucilla externalvalidationofprognosticmodelspredictingpreeclampsiaindividualparticipantdatametaanalysis
AT thilaganathanbasky externalvalidationofprognosticmodelspredictingpreeclampsiaindividualparticipantdatametaanalysis
AT staffannec externalvalidationofprognosticmodelspredictingpreeclampsiaindividualparticipantdatametaanalysis
AT smithgordoncs externalvalidationofprognosticmodelspredictingpreeclampsiaindividualparticipantdatametaanalysis
AT ganzevoortwessel externalvalidationofprognosticmodelspredictingpreeclampsiaindividualparticipantdatametaanalysis
AT laivuorihannele externalvalidationofprognosticmodelspredictingpreeclampsiaindividualparticipantdatametaanalysis
AT odiboanthonyo externalvalidationofprognosticmodelspredictingpreeclampsiaindividualparticipantdatametaanalysis
AT arenasramirezjavier externalvalidationofprognosticmodelspredictingpreeclampsiaindividualparticipantdatametaanalysis
AT kingdomjohn externalvalidationofprognosticmodelspredictingpreeclampsiaindividualparticipantdatametaanalysis
AT daskalakisgeorge externalvalidationofprognosticmodelspredictingpreeclampsiaindividualparticipantdatametaanalysis
AT farrardiane externalvalidationofprognosticmodelspredictingpreeclampsiaindividualparticipantdatametaanalysis
AT baschatahmeta externalvalidationofprognosticmodelspredictingpreeclampsiaindividualparticipantdatametaanalysis
AT seedpault externalvalidationofprognosticmodelspredictingpreeclampsiaindividualparticipantdatametaanalysis
AT prefumofederico externalvalidationofprognosticmodelspredictingpreeclampsiaindividualparticipantdatametaanalysis
AT dasilvacostafabricio externalvalidationofprognosticmodelspredictingpreeclampsiaindividualparticipantdatametaanalysis
AT groenhenk externalvalidationofprognosticmodelspredictingpreeclampsiaindividualparticipantdatametaanalysis
AT audibertfrancois externalvalidationofprognosticmodelspredictingpreeclampsiaindividualparticipantdatametaanalysis
AT massejacques externalvalidationofprognosticmodelspredictingpreeclampsiaindividualparticipantdatametaanalysis
AT skrastadragnhildb externalvalidationofprognosticmodelspredictingpreeclampsiaindividualparticipantdatametaanalysis
AT salvesenkjella externalvalidationofprognosticmodelspredictingpreeclampsiaindividualparticipantdatametaanalysis
AT haavaldsencamilla externalvalidationofprognosticmodelspredictingpreeclampsiaindividualparticipantdatametaanalysis
AT nagatachie externalvalidationofprognosticmodelspredictingpreeclampsiaindividualparticipantdatametaanalysis
AT rumboldalicer externalvalidationofprognosticmodelspredictingpreeclampsiaindividualparticipantdatametaanalysis
AT heinonenseppo externalvalidationofprognosticmodelspredictingpreeclampsiaindividualparticipantdatametaanalysis
AT askielisam externalvalidationofprognosticmodelspredictingpreeclampsiaindividualparticipantdatametaanalysis
AT smitslucjm externalvalidationofprognosticmodelspredictingpreeclampsiaindividualparticipantdatametaanalysis
AT vinterchristinaa externalvalidationofprognosticmodelspredictingpreeclampsiaindividualparticipantdatametaanalysis
AT magnusper externalvalidationofprognosticmodelspredictingpreeclampsiaindividualparticipantdatametaanalysis
AT eerokajantie externalvalidationofprognosticmodelspredictingpreeclampsiaindividualparticipantdatametaanalysis
AT villapiam externalvalidationofprognosticmodelspredictingpreeclampsiaindividualparticipantdatametaanalysis
AT jenumannek externalvalidationofprognosticmodelspredictingpreeclampsiaindividualparticipantdatametaanalysis
AT andersenlouiseb externalvalidationofprognosticmodelspredictingpreeclampsiaindividualparticipantdatametaanalysis
AT normanjanee externalvalidationofprognosticmodelspredictingpreeclampsiaindividualparticipantdatametaanalysis
AT ohkuchiakihide externalvalidationofprognosticmodelspredictingpreeclampsiaindividualparticipantdatametaanalysis
AT eskildanne externalvalidationofprognosticmodelspredictingpreeclampsiaindividualparticipantdatametaanalysis
AT bhattacharyasohinee externalvalidationofprognosticmodelspredictingpreeclampsiaindividualparticipantdatametaanalysis
AT mcauliffefionnualam externalvalidationofprognosticmodelspredictingpreeclampsiaindividualparticipantdatametaanalysis
AT galindoalberto externalvalidationofprognosticmodelspredictingpreeclampsiaindividualparticipantdatametaanalysis
AT herraizignacio externalvalidationofprognosticmodelspredictingpreeclampsiaindividualparticipantdatametaanalysis
AT carbillonlionel externalvalidationofprognosticmodelspredictingpreeclampsiaindividualparticipantdatametaanalysis
AT klipsteingrobuschkerstin externalvalidationofprognosticmodelspredictingpreeclampsiaindividualparticipantdatametaanalysis
AT yeoseonae externalvalidationofprognosticmodelspredictingpreeclampsiaindividualparticipantdatametaanalysis
AT brownejoycel externalvalidationofprognosticmodelspredictingpreeclampsiaindividualparticipantdatametaanalysis
AT moonskarelgm externalvalidationofprognosticmodelspredictingpreeclampsiaindividualparticipantdatametaanalysis
AT rileyrichardd externalvalidationofprognosticmodelspredictingpreeclampsiaindividualparticipantdatametaanalysis
AT thangaratinamshakila externalvalidationofprognosticmodelspredictingpreeclampsiaindividualparticipantdatametaanalysis
AT externalvalidationofprognosticmodelspredictingpreeclampsiaindividualparticipantdatametaanalysis