Cargando…
External validation of prognostic models predicting pre-eclampsia: individual participant data meta-analysis
BACKGROUND: Pre-eclampsia is a leading cause of maternal and perinatal mortality and morbidity. Early identification of women at risk during pregnancy is required to plan management. Although there are many published prediction models for pre-eclampsia, few have been validated in external data. Our...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7604970/ https://www.ncbi.nlm.nih.gov/pubmed/33131506 http://dx.doi.org/10.1186/s12916-020-01766-9 |
_version_ | 1783604226617769984 |
---|---|
author | Snell, Kym I. E. Allotey, John Smuk, Melanie Hooper, Richard Chan, Claire Ahmed, Asif Chappell, Lucy C. Von Dadelszen, Peter Green, Marcus Kenny, Louise Khalil, Asma Khan, Khalid S. Mol, Ben W. Myers, Jenny Poston, Lucilla Thilaganathan, Basky Staff, Anne C. Smith, Gordon C. S. Ganzevoort, Wessel Laivuori, Hannele Odibo, Anthony O. Arenas Ramírez, Javier Kingdom, John Daskalakis, George Farrar, Diane Baschat, Ahmet A. Seed, Paul T. Prefumo, Federico da Silva Costa, Fabricio Groen, Henk Audibert, Francois Masse, Jacques Skråstad, Ragnhild B. Salvesen, Kjell Å. Haavaldsen, Camilla Nagata, Chie Rumbold, Alice R. Heinonen, Seppo Askie, Lisa M. Smits, Luc J. M. Vinter, Christina A. Magnus, Per Eero, Kajantie Villa, Pia M. Jenum, Anne K. Andersen, Louise B. Norman, Jane E. Ohkuchi, Akihide Eskild, Anne Bhattacharya, Sohinee McAuliffe, Fionnuala M. Galindo, Alberto Herraiz, Ignacio Carbillon, Lionel Klipstein-Grobusch, Kerstin Yeo, Seon Ae Browne, Joyce L. Moons, Karel G. M. Riley, Richard D. Thangaratinam, Shakila |
author_facet | Snell, Kym I. E. Allotey, John Smuk, Melanie Hooper, Richard Chan, Claire Ahmed, Asif Chappell, Lucy C. Von Dadelszen, Peter Green, Marcus Kenny, Louise Khalil, Asma Khan, Khalid S. Mol, Ben W. Myers, Jenny Poston, Lucilla Thilaganathan, Basky Staff, Anne C. Smith, Gordon C. S. Ganzevoort, Wessel Laivuori, Hannele Odibo, Anthony O. Arenas Ramírez, Javier Kingdom, John Daskalakis, George Farrar, Diane Baschat, Ahmet A. Seed, Paul T. Prefumo, Federico da Silva Costa, Fabricio Groen, Henk Audibert, Francois Masse, Jacques Skråstad, Ragnhild B. Salvesen, Kjell Å. Haavaldsen, Camilla Nagata, Chie Rumbold, Alice R. Heinonen, Seppo Askie, Lisa M. Smits, Luc J. M. Vinter, Christina A. Magnus, Per Eero, Kajantie Villa, Pia M. Jenum, Anne K. Andersen, Louise B. Norman, Jane E. Ohkuchi, Akihide Eskild, Anne Bhattacharya, Sohinee McAuliffe, Fionnuala M. Galindo, Alberto Herraiz, Ignacio Carbillon, Lionel Klipstein-Grobusch, Kerstin Yeo, Seon Ae Browne, Joyce L. Moons, Karel G. M. Riley, Richard D. Thangaratinam, Shakila |
author_sort | Snell, Kym I. E. |
collection | PubMed |
description | BACKGROUND: Pre-eclampsia is a leading cause of maternal and perinatal mortality and morbidity. Early identification of women at risk during pregnancy is required to plan management. Although there are many published prediction models for pre-eclampsia, few have been validated in external data. Our objective was to externally validate published prediction models for pre-eclampsia using individual participant data (IPD) from UK studies, to evaluate whether any of the models can accurately predict the condition when used within the UK healthcare setting. METHODS: IPD from 11 UK cohort studies (217,415 pregnant women) within the International Prediction of Pregnancy Complications (IPPIC) pre-eclampsia network contributed to external validation of published prediction models, identified by systematic review. Cohorts that measured all predictor variables in at least one of the identified models and reported pre-eclampsia as an outcome were included for validation. We reported the model predictive performance as discrimination (C-statistic), calibration (calibration plots, calibration slope, calibration-in-the-large), and net benefit. Performance measures were estimated separately in each available study and then, where possible, combined across studies in a random-effects meta-analysis. RESULTS: Of 131 published models, 67 provided the full model equation and 24 could be validated in 11 UK cohorts. Most of the models showed modest discrimination with summary C-statistics between 0.6 and 0.7. The calibration of the predicted compared to observed risk was generally poor for most models with observed calibration slopes less than 1, indicating that predictions were generally too extreme, although confidence intervals were wide. There was large between-study heterogeneity in each model’s calibration-in-the-large, suggesting poor calibration of the predicted overall risk across populations. In a subset of models, the net benefit of using the models to inform clinical decisions appeared small and limited to probability thresholds between 5 and 7%. CONCLUSIONS: The evaluated models had modest predictive performance, with key limitations such as poor calibration (likely due to overfitting in the original development datasets), substantial heterogeneity, and small net benefit across settings. The evidence to support the use of these prediction models for pre-eclampsia in clinical decision-making is limited. Any models that we could not validate should be examined in terms of their predictive performance, net benefit, and heterogeneity across multiple UK settings before consideration for use in practice. TRIAL REGISTRATION: PROSPERO ID: CRD42015029349. |
format | Online Article Text |
id | pubmed-7604970 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-76049702020-11-03 External validation of prognostic models predicting pre-eclampsia: individual participant data meta-analysis Snell, Kym I. E. Allotey, John Smuk, Melanie Hooper, Richard Chan, Claire Ahmed, Asif Chappell, Lucy C. Von Dadelszen, Peter Green, Marcus Kenny, Louise Khalil, Asma Khan, Khalid S. Mol, Ben W. Myers, Jenny Poston, Lucilla Thilaganathan, Basky Staff, Anne C. Smith, Gordon C. S. Ganzevoort, Wessel Laivuori, Hannele Odibo, Anthony O. Arenas Ramírez, Javier Kingdom, John Daskalakis, George Farrar, Diane Baschat, Ahmet A. Seed, Paul T. Prefumo, Federico da Silva Costa, Fabricio Groen, Henk Audibert, Francois Masse, Jacques Skråstad, Ragnhild B. Salvesen, Kjell Å. Haavaldsen, Camilla Nagata, Chie Rumbold, Alice R. Heinonen, Seppo Askie, Lisa M. Smits, Luc J. M. Vinter, Christina A. Magnus, Per Eero, Kajantie Villa, Pia M. Jenum, Anne K. Andersen, Louise B. Norman, Jane E. Ohkuchi, Akihide Eskild, Anne Bhattacharya, Sohinee McAuliffe, Fionnuala M. Galindo, Alberto Herraiz, Ignacio Carbillon, Lionel Klipstein-Grobusch, Kerstin Yeo, Seon Ae Browne, Joyce L. Moons, Karel G. M. Riley, Richard D. Thangaratinam, Shakila BMC Med Research Article BACKGROUND: Pre-eclampsia is a leading cause of maternal and perinatal mortality and morbidity. Early identification of women at risk during pregnancy is required to plan management. Although there are many published prediction models for pre-eclampsia, few have been validated in external data. Our objective was to externally validate published prediction models for pre-eclampsia using individual participant data (IPD) from UK studies, to evaluate whether any of the models can accurately predict the condition when used within the UK healthcare setting. METHODS: IPD from 11 UK cohort studies (217,415 pregnant women) within the International Prediction of Pregnancy Complications (IPPIC) pre-eclampsia network contributed to external validation of published prediction models, identified by systematic review. Cohorts that measured all predictor variables in at least one of the identified models and reported pre-eclampsia as an outcome were included for validation. We reported the model predictive performance as discrimination (C-statistic), calibration (calibration plots, calibration slope, calibration-in-the-large), and net benefit. Performance measures were estimated separately in each available study and then, where possible, combined across studies in a random-effects meta-analysis. RESULTS: Of 131 published models, 67 provided the full model equation and 24 could be validated in 11 UK cohorts. Most of the models showed modest discrimination with summary C-statistics between 0.6 and 0.7. The calibration of the predicted compared to observed risk was generally poor for most models with observed calibration slopes less than 1, indicating that predictions were generally too extreme, although confidence intervals were wide. There was large between-study heterogeneity in each model’s calibration-in-the-large, suggesting poor calibration of the predicted overall risk across populations. In a subset of models, the net benefit of using the models to inform clinical decisions appeared small and limited to probability thresholds between 5 and 7%. CONCLUSIONS: The evaluated models had modest predictive performance, with key limitations such as poor calibration (likely due to overfitting in the original development datasets), substantial heterogeneity, and small net benefit across settings. The evidence to support the use of these prediction models for pre-eclampsia in clinical decision-making is limited. Any models that we could not validate should be examined in terms of their predictive performance, net benefit, and heterogeneity across multiple UK settings before consideration for use in practice. TRIAL REGISTRATION: PROSPERO ID: CRD42015029349. BioMed Central 2020-11-02 /pmc/articles/PMC7604970/ /pubmed/33131506 http://dx.doi.org/10.1186/s12916-020-01766-9 Text en © The Author(s) 2020 Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
spellingShingle | Research Article Snell, Kym I. E. Allotey, John Smuk, Melanie Hooper, Richard Chan, Claire Ahmed, Asif Chappell, Lucy C. Von Dadelszen, Peter Green, Marcus Kenny, Louise Khalil, Asma Khan, Khalid S. Mol, Ben W. Myers, Jenny Poston, Lucilla Thilaganathan, Basky Staff, Anne C. Smith, Gordon C. S. Ganzevoort, Wessel Laivuori, Hannele Odibo, Anthony O. Arenas Ramírez, Javier Kingdom, John Daskalakis, George Farrar, Diane Baschat, Ahmet A. Seed, Paul T. Prefumo, Federico da Silva Costa, Fabricio Groen, Henk Audibert, Francois Masse, Jacques Skråstad, Ragnhild B. Salvesen, Kjell Å. Haavaldsen, Camilla Nagata, Chie Rumbold, Alice R. Heinonen, Seppo Askie, Lisa M. Smits, Luc J. M. Vinter, Christina A. Magnus, Per Eero, Kajantie Villa, Pia M. Jenum, Anne K. Andersen, Louise B. Norman, Jane E. Ohkuchi, Akihide Eskild, Anne Bhattacharya, Sohinee McAuliffe, Fionnuala M. Galindo, Alberto Herraiz, Ignacio Carbillon, Lionel Klipstein-Grobusch, Kerstin Yeo, Seon Ae Browne, Joyce L. Moons, Karel G. M. Riley, Richard D. Thangaratinam, Shakila External validation of prognostic models predicting pre-eclampsia: individual participant data meta-analysis |
title | External validation of prognostic models predicting pre-eclampsia: individual participant data meta-analysis |
title_full | External validation of prognostic models predicting pre-eclampsia: individual participant data meta-analysis |
title_fullStr | External validation of prognostic models predicting pre-eclampsia: individual participant data meta-analysis |
title_full_unstemmed | External validation of prognostic models predicting pre-eclampsia: individual participant data meta-analysis |
title_short | External validation of prognostic models predicting pre-eclampsia: individual participant data meta-analysis |
title_sort | external validation of prognostic models predicting pre-eclampsia: individual participant data meta-analysis |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7604970/ https://www.ncbi.nlm.nih.gov/pubmed/33131506 http://dx.doi.org/10.1186/s12916-020-01766-9 |
work_keys_str_mv | AT snellkymie externalvalidationofprognosticmodelspredictingpreeclampsiaindividualparticipantdatametaanalysis AT alloteyjohn externalvalidationofprognosticmodelspredictingpreeclampsiaindividualparticipantdatametaanalysis AT smukmelanie externalvalidationofprognosticmodelspredictingpreeclampsiaindividualparticipantdatametaanalysis AT hooperrichard externalvalidationofprognosticmodelspredictingpreeclampsiaindividualparticipantdatametaanalysis AT chanclaire externalvalidationofprognosticmodelspredictingpreeclampsiaindividualparticipantdatametaanalysis AT ahmedasif externalvalidationofprognosticmodelspredictingpreeclampsiaindividualparticipantdatametaanalysis AT chappelllucyc externalvalidationofprognosticmodelspredictingpreeclampsiaindividualparticipantdatametaanalysis AT vondadelszenpeter externalvalidationofprognosticmodelspredictingpreeclampsiaindividualparticipantdatametaanalysis AT greenmarcus externalvalidationofprognosticmodelspredictingpreeclampsiaindividualparticipantdatametaanalysis AT kennylouise externalvalidationofprognosticmodelspredictingpreeclampsiaindividualparticipantdatametaanalysis AT khalilasma externalvalidationofprognosticmodelspredictingpreeclampsiaindividualparticipantdatametaanalysis AT khankhalids externalvalidationofprognosticmodelspredictingpreeclampsiaindividualparticipantdatametaanalysis AT molbenw externalvalidationofprognosticmodelspredictingpreeclampsiaindividualparticipantdatametaanalysis AT myersjenny externalvalidationofprognosticmodelspredictingpreeclampsiaindividualparticipantdatametaanalysis AT postonlucilla externalvalidationofprognosticmodelspredictingpreeclampsiaindividualparticipantdatametaanalysis AT thilaganathanbasky externalvalidationofprognosticmodelspredictingpreeclampsiaindividualparticipantdatametaanalysis AT staffannec externalvalidationofprognosticmodelspredictingpreeclampsiaindividualparticipantdatametaanalysis AT smithgordoncs externalvalidationofprognosticmodelspredictingpreeclampsiaindividualparticipantdatametaanalysis AT ganzevoortwessel externalvalidationofprognosticmodelspredictingpreeclampsiaindividualparticipantdatametaanalysis AT laivuorihannele externalvalidationofprognosticmodelspredictingpreeclampsiaindividualparticipantdatametaanalysis AT odiboanthonyo externalvalidationofprognosticmodelspredictingpreeclampsiaindividualparticipantdatametaanalysis AT arenasramirezjavier externalvalidationofprognosticmodelspredictingpreeclampsiaindividualparticipantdatametaanalysis AT kingdomjohn externalvalidationofprognosticmodelspredictingpreeclampsiaindividualparticipantdatametaanalysis AT daskalakisgeorge externalvalidationofprognosticmodelspredictingpreeclampsiaindividualparticipantdatametaanalysis AT farrardiane externalvalidationofprognosticmodelspredictingpreeclampsiaindividualparticipantdatametaanalysis AT baschatahmeta externalvalidationofprognosticmodelspredictingpreeclampsiaindividualparticipantdatametaanalysis AT seedpault externalvalidationofprognosticmodelspredictingpreeclampsiaindividualparticipantdatametaanalysis AT prefumofederico externalvalidationofprognosticmodelspredictingpreeclampsiaindividualparticipantdatametaanalysis AT dasilvacostafabricio externalvalidationofprognosticmodelspredictingpreeclampsiaindividualparticipantdatametaanalysis AT groenhenk externalvalidationofprognosticmodelspredictingpreeclampsiaindividualparticipantdatametaanalysis AT audibertfrancois externalvalidationofprognosticmodelspredictingpreeclampsiaindividualparticipantdatametaanalysis AT massejacques externalvalidationofprognosticmodelspredictingpreeclampsiaindividualparticipantdatametaanalysis AT skrastadragnhildb externalvalidationofprognosticmodelspredictingpreeclampsiaindividualparticipantdatametaanalysis AT salvesenkjella externalvalidationofprognosticmodelspredictingpreeclampsiaindividualparticipantdatametaanalysis AT haavaldsencamilla externalvalidationofprognosticmodelspredictingpreeclampsiaindividualparticipantdatametaanalysis AT nagatachie externalvalidationofprognosticmodelspredictingpreeclampsiaindividualparticipantdatametaanalysis AT rumboldalicer externalvalidationofprognosticmodelspredictingpreeclampsiaindividualparticipantdatametaanalysis AT heinonenseppo externalvalidationofprognosticmodelspredictingpreeclampsiaindividualparticipantdatametaanalysis AT askielisam externalvalidationofprognosticmodelspredictingpreeclampsiaindividualparticipantdatametaanalysis AT smitslucjm externalvalidationofprognosticmodelspredictingpreeclampsiaindividualparticipantdatametaanalysis AT vinterchristinaa externalvalidationofprognosticmodelspredictingpreeclampsiaindividualparticipantdatametaanalysis AT magnusper externalvalidationofprognosticmodelspredictingpreeclampsiaindividualparticipantdatametaanalysis AT eerokajantie externalvalidationofprognosticmodelspredictingpreeclampsiaindividualparticipantdatametaanalysis AT villapiam externalvalidationofprognosticmodelspredictingpreeclampsiaindividualparticipantdatametaanalysis AT jenumannek externalvalidationofprognosticmodelspredictingpreeclampsiaindividualparticipantdatametaanalysis AT andersenlouiseb externalvalidationofprognosticmodelspredictingpreeclampsiaindividualparticipantdatametaanalysis AT normanjanee externalvalidationofprognosticmodelspredictingpreeclampsiaindividualparticipantdatametaanalysis AT ohkuchiakihide externalvalidationofprognosticmodelspredictingpreeclampsiaindividualparticipantdatametaanalysis AT eskildanne externalvalidationofprognosticmodelspredictingpreeclampsiaindividualparticipantdatametaanalysis AT bhattacharyasohinee externalvalidationofprognosticmodelspredictingpreeclampsiaindividualparticipantdatametaanalysis AT mcauliffefionnualam externalvalidationofprognosticmodelspredictingpreeclampsiaindividualparticipantdatametaanalysis AT galindoalberto externalvalidationofprognosticmodelspredictingpreeclampsiaindividualparticipantdatametaanalysis AT herraizignacio externalvalidationofprognosticmodelspredictingpreeclampsiaindividualparticipantdatametaanalysis AT carbillonlionel externalvalidationofprognosticmodelspredictingpreeclampsiaindividualparticipantdatametaanalysis AT klipsteingrobuschkerstin externalvalidationofprognosticmodelspredictingpreeclampsiaindividualparticipantdatametaanalysis AT yeoseonae externalvalidationofprognosticmodelspredictingpreeclampsiaindividualparticipantdatametaanalysis AT brownejoycel externalvalidationofprognosticmodelspredictingpreeclampsiaindividualparticipantdatametaanalysis AT moonskarelgm externalvalidationofprognosticmodelspredictingpreeclampsiaindividualparticipantdatametaanalysis AT rileyrichardd externalvalidationofprognosticmodelspredictingpreeclampsiaindividualparticipantdatametaanalysis AT thangaratinamshakila externalvalidationofprognosticmodelspredictingpreeclampsiaindividualparticipantdatametaanalysis AT externalvalidationofprognosticmodelspredictingpreeclampsiaindividualparticipantdatametaanalysis |