Cargando…
Physiology and clinical utility of the peripheral venous waveform
The peripheral venous system serves as a volume reservoir due to its high compliance and can yield information on intravascular volume status. Peripheral venous waveforms can be captured by direct transduction through a peripheral catheter, non-invasive piezoelectric transduction, or gleaned from ot...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7605016/ https://www.ncbi.nlm.nih.gov/pubmed/33194174 http://dx.doi.org/10.1177/2048004020970038 |
Sumario: | The peripheral venous system serves as a volume reservoir due to its high compliance and can yield information on intravascular volume status. Peripheral venous waveforms can be captured by direct transduction through a peripheral catheter, non-invasive piezoelectric transduction, or gleaned from other waveforms such as the plethysmograph. Older analysis techniques relied upon pressure waveforms such as peripheral venous pressure and central venous pressure as a means of evaluating fluid responsiveness. Newer peripheral venous waveform analysis techniques exist in both the time and frequency domains, and have been applied to various clinical scenarios including hypovolemia (i.e. hemorrhage, dehydration) and volume overload. |
---|