Cargando…
Hist-Immune signature: a prognostic factor in colorectal cancer using immunohistochemical slide image analysis
Computerized image analysis for whole-slide images has been shown to improve efficiency, accuracy, and consistency in histopathology evaluations. We aimed to assess whether immunohistochemistry (IHC) image quantitative features can reflect the immune status and provide prognostic information for col...
Autores principales: | Zhao, Ke, Li, Zhenhui, Li, Yong, Yao, Su, Huang, Yanqi, Wang, Yingyi, Zhang, Fang, Wu, Lin, Chen, Xin, Liang, Changhong, Liu, Zaiyi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7605350/ https://www.ncbi.nlm.nih.gov/pubmed/33194320 http://dx.doi.org/10.1080/2162402X.2020.1841935 |
Ejemplares similares
-
Artificial intelligence quantified tumour-stroma ratio is an independent predictor for overall survival in resectable colorectal cancer
por: Zhao, Ke, et al.
Publicado: (2020) -
Prognostic value of a modified Immunoscore in patients with stage I−III resectable colon cancer
por: Zhao, Ke, et al.
Publicado: (2021) -
Deep learning quantified mucus-tumor ratio predicting survival of patients with colorectal cancer using whole-slide images
por: Zhao, Ke, et al.
Publicado: (2021) -
A deep learning quantified stroma-immune score to predict survival of patients with stage II–III colorectal cancer
por: Xu, Zeyan, et al.
Publicado: (2021) -
A radiomics prognostic scoring system for predicting progression-free survival in patients with stage IV non-small cell lung cancer treated with platinum-based chemotherapy
por: He, Lan, et al.
Publicado: (2021)