Cargando…

Pseudolaric Acid B Inhibits Proliferation, Invasion, and Angiogenesis in Esophageal Squamous Cell Carcinoma Through Regulating CD147

BACKGROUND: Esophageal squamous cell carcinoma (ESCC) is a common malignant tumor of the digestive system. Studies have shown that pseudolaric acid B (PAB) has several pharmacological effects like anti-microtubule, anti-angiogenesis, and antitumor functions, while the effect and mechanism of PAB on...

Descripción completa

Detalles Bibliográficos
Autores principales: Yin, Zhe, Cai, Huarong, Wang, Zhiqiang, Jiang, Yuequan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Dove 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7605399/
https://www.ncbi.nlm.nih.gov/pubmed/33149553
http://dx.doi.org/10.2147/DDDT.S269915
Descripción
Sumario:BACKGROUND: Esophageal squamous cell carcinoma (ESCC) is a common malignant tumor of the digestive system. Studies have shown that pseudolaric acid B (PAB) has several pharmacological effects like anti-microtubule, anti-angiogenesis, and antitumor functions, while the effect and mechanism of PAB on esophageal cancer are still unclear. This study was designed to investigate the effects of PAB on ESCC. METHODS: To study the effects of PAB on the biological function through a series of in vitro and in vivo experiments. RESULTS: The results revealed that PAB inhibited the proliferation, invasion, and migration, but promoted the apoptosis of ESCC. Moreover, PAB restrained the growth of cancer cells in vivo and inhibited the angiogenesis of HUVEC in mice with ESCC. CD147 expression was increased in the esophageal squamous cell lines, and interference with CD147 hindered the proliferation, invasion, and migration of ESCC cells, and inhibited the growth and angiogenesis of the esophageal squamous cell line. PAB reduced the expression of CD147 in vivo and in vitro. The expression of MMP2, 3, and 9 was increased after overexpression of CD147, which provided the opportunity to reverse the role of PAB in inhibiting proliferation, invasion, migration, and angiogenesis of ESCC. DISCUSSION: The results revealed that PAB inhibited the proliferation, invasion, migration, and angiogenesis of ESCC in vitro and in vivo by CD147. PAB is a promising monomer for therapy of ESCC, providing references for future research on ESCC treatment.