Cargando…

Modulating the tension-time integral of the cardiac twitch prevents dilated cardiomyopathy in murine hearts

Dilated cardiomyopathy (DCM) is often associated with sarcomere protein mutations that confer reduced myofilament tension–generating capacity. We demonstrated that cardiac twitch tension-time integrals can be targeted and tuned to prevent DCM remodeling in hearts with contractile dysfunction. We emp...

Descripción completa

Detalles Bibliográficos
Autores principales: Powers, Joseph D., Kooiker, Kristina B., Mason, Allison B., Teitgen, Abigail E., Flint, Galina V., Tardiff, Jil C., Schwartz, Steven D., McCulloch, Andrew D., Regnier, Michael, Davis, Jennifer, Moussavi-Harami, Farid
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Clinical Investigation 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7605524/
https://www.ncbi.nlm.nih.gov/pubmed/32931484
http://dx.doi.org/10.1172/jci.insight.142446
_version_ 1783604318887215104
author Powers, Joseph D.
Kooiker, Kristina B.
Mason, Allison B.
Teitgen, Abigail E.
Flint, Galina V.
Tardiff, Jil C.
Schwartz, Steven D.
McCulloch, Andrew D.
Regnier, Michael
Davis, Jennifer
Moussavi-Harami, Farid
author_facet Powers, Joseph D.
Kooiker, Kristina B.
Mason, Allison B.
Teitgen, Abigail E.
Flint, Galina V.
Tardiff, Jil C.
Schwartz, Steven D.
McCulloch, Andrew D.
Regnier, Michael
Davis, Jennifer
Moussavi-Harami, Farid
author_sort Powers, Joseph D.
collection PubMed
description Dilated cardiomyopathy (DCM) is often associated with sarcomere protein mutations that confer reduced myofilament tension–generating capacity. We demonstrated that cardiac twitch tension-time integrals can be targeted and tuned to prevent DCM remodeling in hearts with contractile dysfunction. We employed a transgenic murine model of DCM caused by the D230N-tropomyosin (Tm) mutation and designed a sarcomere-based intervention specifically targeting the twitch tension-time integral of D230N-Tm hearts using multiscale computational models of intramolecular and intermolecular interactions in the thin filament and cell-level contractile simulations. Our models predicted that increasing the calcium sensitivity of thin filament activation using the cardiac troponin C (cTnC) variant L48Q can sufficiently augment twitch tension-time integrals of D230N-Tm hearts. Indeed, cardiac muscle isolated from double-transgenic hearts expressing D230N-Tm and L48Q cTnC had increased calcium sensitivity of tension development and increased twitch tension-time integrals compared with preparations from hearts with D230N-Tm alone. Longitudinal echocardiographic measurements revealed that DTG hearts retained normal cardiac morphology and function, whereas D230N-Tm hearts developed progressive DCM. We present a computational and experimental framework for targeting molecular mechanisms governing the twitch tension of cardiomyopathic hearts to counteract putative mechanical drivers of adverse remodeling and open possibilities for tension-based treatments of genetic cardiomyopathies.
format Online
Article
Text
id pubmed-7605524
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher American Society for Clinical Investigation
record_format MEDLINE/PubMed
spelling pubmed-76055242020-11-04 Modulating the tension-time integral of the cardiac twitch prevents dilated cardiomyopathy in murine hearts Powers, Joseph D. Kooiker, Kristina B. Mason, Allison B. Teitgen, Abigail E. Flint, Galina V. Tardiff, Jil C. Schwartz, Steven D. McCulloch, Andrew D. Regnier, Michael Davis, Jennifer Moussavi-Harami, Farid JCI Insight Research Article Dilated cardiomyopathy (DCM) is often associated with sarcomere protein mutations that confer reduced myofilament tension–generating capacity. We demonstrated that cardiac twitch tension-time integrals can be targeted and tuned to prevent DCM remodeling in hearts with contractile dysfunction. We employed a transgenic murine model of DCM caused by the D230N-tropomyosin (Tm) mutation and designed a sarcomere-based intervention specifically targeting the twitch tension-time integral of D230N-Tm hearts using multiscale computational models of intramolecular and intermolecular interactions in the thin filament and cell-level contractile simulations. Our models predicted that increasing the calcium sensitivity of thin filament activation using the cardiac troponin C (cTnC) variant L48Q can sufficiently augment twitch tension-time integrals of D230N-Tm hearts. Indeed, cardiac muscle isolated from double-transgenic hearts expressing D230N-Tm and L48Q cTnC had increased calcium sensitivity of tension development and increased twitch tension-time integrals compared with preparations from hearts with D230N-Tm alone. Longitudinal echocardiographic measurements revealed that DTG hearts retained normal cardiac morphology and function, whereas D230N-Tm hearts developed progressive DCM. We present a computational and experimental framework for targeting molecular mechanisms governing the twitch tension of cardiomyopathic hearts to counteract putative mechanical drivers of adverse remodeling and open possibilities for tension-based treatments of genetic cardiomyopathies. American Society for Clinical Investigation 2020-10-15 /pmc/articles/PMC7605524/ /pubmed/32931484 http://dx.doi.org/10.1172/jci.insight.142446 Text en © 2020 Powers et al. http://creativecommons.org/licenses/by/4.0/ This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Research Article
Powers, Joseph D.
Kooiker, Kristina B.
Mason, Allison B.
Teitgen, Abigail E.
Flint, Galina V.
Tardiff, Jil C.
Schwartz, Steven D.
McCulloch, Andrew D.
Regnier, Michael
Davis, Jennifer
Moussavi-Harami, Farid
Modulating the tension-time integral of the cardiac twitch prevents dilated cardiomyopathy in murine hearts
title Modulating the tension-time integral of the cardiac twitch prevents dilated cardiomyopathy in murine hearts
title_full Modulating the tension-time integral of the cardiac twitch prevents dilated cardiomyopathy in murine hearts
title_fullStr Modulating the tension-time integral of the cardiac twitch prevents dilated cardiomyopathy in murine hearts
title_full_unstemmed Modulating the tension-time integral of the cardiac twitch prevents dilated cardiomyopathy in murine hearts
title_short Modulating the tension-time integral of the cardiac twitch prevents dilated cardiomyopathy in murine hearts
title_sort modulating the tension-time integral of the cardiac twitch prevents dilated cardiomyopathy in murine hearts
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7605524/
https://www.ncbi.nlm.nih.gov/pubmed/32931484
http://dx.doi.org/10.1172/jci.insight.142446
work_keys_str_mv AT powersjosephd modulatingthetensiontimeintegralofthecardiactwitchpreventsdilatedcardiomyopathyinmurinehearts
AT kooikerkristinab modulatingthetensiontimeintegralofthecardiactwitchpreventsdilatedcardiomyopathyinmurinehearts
AT masonallisonb modulatingthetensiontimeintegralofthecardiactwitchpreventsdilatedcardiomyopathyinmurinehearts
AT teitgenabigaile modulatingthetensiontimeintegralofthecardiactwitchpreventsdilatedcardiomyopathyinmurinehearts
AT flintgalinav modulatingthetensiontimeintegralofthecardiactwitchpreventsdilatedcardiomyopathyinmurinehearts
AT tardiffjilc modulatingthetensiontimeintegralofthecardiactwitchpreventsdilatedcardiomyopathyinmurinehearts
AT schwartzstevend modulatingthetensiontimeintegralofthecardiactwitchpreventsdilatedcardiomyopathyinmurinehearts
AT mccullochandrewd modulatingthetensiontimeintegralofthecardiactwitchpreventsdilatedcardiomyopathyinmurinehearts
AT regniermichael modulatingthetensiontimeintegralofthecardiactwitchpreventsdilatedcardiomyopathyinmurinehearts
AT davisjennifer modulatingthetensiontimeintegralofthecardiactwitchpreventsdilatedcardiomyopathyinmurinehearts
AT moussaviharamifarid modulatingthetensiontimeintegralofthecardiactwitchpreventsdilatedcardiomyopathyinmurinehearts