Cargando…
From 5Vs to 6Cs: Operationalizing Epidemic Data Management with COVID-19 Surveillance
The COVID-19 pandemic brought to the forefront an unprecedented need for experts, as well as citizens, to visualize spatio-temporal disease surveillance data. Web application dashboards were quickly developed to fill this gap, including those built by JHU, WHO, and CDC, but all of these dashboards s...
Autores principales: | Peddireddy, Akhil Sai, Xie, Dawen, Patil, Pramod, Wilson, Mandy L., Machi, Dustin, Venkatramanan, Srinivasan, Klahn, Brian, Porebski, Przemyslaw, Bhattacharya, Parantapa, Dumbre, Shirish, Raymond, Erin, Marathe, Madhav |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7605571/ https://www.ncbi.nlm.nih.gov/pubmed/33140060 http://dx.doi.org/10.1101/2020.10.27.20220830 |
Ejemplares similares
-
An Automated Approach for Finding Spatio-Temporal Patterns of Seasonal Influenza in the United States: Algorithm Validation Study
por: Sambaturu, Prathyush, et al.
Publicado: (2020) -
A framework for evaluating epidemic forecasts
por: Tabataba, Farzaneh Sadat, et al.
Publicado: (2017) -
Data-driven modeling for different stages of pandemic response
por: Adiga, Aniruddha, et al.
Publicado: (2020) -
MATHEMATICAL MODELS FOR COVID-19 PANDEMIC: A COMPARATIVE ANALYSIS
por: ADIGA, ANIRUDDHA, et al.
Publicado: (2020) -
Mathematical Models for COVID-19 Pandemic: A Comparative Analysis
por: Adiga, Aniruddha, et al.
Publicado: (2020)