Cargando…
Aggregation by peptide conjugation rescues poor immunogenicity of the HA stem
Influenza virus infection is a global public health threat. Current seasonal influenza vaccines are efficacious only when vaccine strains are matched with circulating strains. There is a critical need for developing “universal” vaccines that protect against all influenza viruses. HA stem is a promis...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7605677/ https://www.ncbi.nlm.nih.gov/pubmed/33137148 http://dx.doi.org/10.1371/journal.pone.0241649 |
_version_ | 1783604353036189696 |
---|---|
author | Jiang, Wenbo Pilkington, Emily H. Kelly, Hannah G. Tan, Hyon-Xhi Juno, Jennifer A. Wheatley, Adam K. Kent, Stephen J. |
author_facet | Jiang, Wenbo Pilkington, Emily H. Kelly, Hannah G. Tan, Hyon-Xhi Juno, Jennifer A. Wheatley, Adam K. Kent, Stephen J. |
author_sort | Jiang, Wenbo |
collection | PubMed |
description | Influenza virus infection is a global public health threat. Current seasonal influenza vaccines are efficacious only when vaccine strains are matched with circulating strains. There is a critical need for developing “universal” vaccines that protect against all influenza viruses. HA stem is a promising target for developing broad-spectrum influenza vaccines due to its relatively conserved feature. However, HA stem is weakly immunogenic when administered alone in a soluble form. Several approaches have been employed to improve the immunogenicity of HA stem, including conjugation of HA stem with a highly immunogenic carrier protein or displaying HA stem on a nanoparticle scaffold. Converting a weakly immunologic protein into a multimer through aggregation can significantly enhance its immunogenicity, with some multimeric protein aggregates previously shown to be more immunogenic than their soluble counterparts in animal models. Here, we show that a chemically coupling a peptide derived from the head domain of PR8 HA (P35) with the poorly immunogenic HA stem protein results in aggregation of the HA stem which significantly increases stem-specific B cell responses following vaccination. Importantly, vaccination with this conjugate in the absence of adjuvant still induced robust B cell responses against stem in vivo. Improving HA stem immunogenicity by aggregation provides an alternative avenue to conjugation with exotic carrier proteins or nanoparticle formulation. |
format | Online Article Text |
id | pubmed-7605677 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-76056772020-11-05 Aggregation by peptide conjugation rescues poor immunogenicity of the HA stem Jiang, Wenbo Pilkington, Emily H. Kelly, Hannah G. Tan, Hyon-Xhi Juno, Jennifer A. Wheatley, Adam K. Kent, Stephen J. PLoS One Research Article Influenza virus infection is a global public health threat. Current seasonal influenza vaccines are efficacious only when vaccine strains are matched with circulating strains. There is a critical need for developing “universal” vaccines that protect against all influenza viruses. HA stem is a promising target for developing broad-spectrum influenza vaccines due to its relatively conserved feature. However, HA stem is weakly immunogenic when administered alone in a soluble form. Several approaches have been employed to improve the immunogenicity of HA stem, including conjugation of HA stem with a highly immunogenic carrier protein or displaying HA stem on a nanoparticle scaffold. Converting a weakly immunologic protein into a multimer through aggregation can significantly enhance its immunogenicity, with some multimeric protein aggregates previously shown to be more immunogenic than their soluble counterparts in animal models. Here, we show that a chemically coupling a peptide derived from the head domain of PR8 HA (P35) with the poorly immunogenic HA stem protein results in aggregation of the HA stem which significantly increases stem-specific B cell responses following vaccination. Importantly, vaccination with this conjugate in the absence of adjuvant still induced robust B cell responses against stem in vivo. Improving HA stem immunogenicity by aggregation provides an alternative avenue to conjugation with exotic carrier proteins or nanoparticle formulation. Public Library of Science 2020-11-02 /pmc/articles/PMC7605677/ /pubmed/33137148 http://dx.doi.org/10.1371/journal.pone.0241649 Text en © 2020 Jiang et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Jiang, Wenbo Pilkington, Emily H. Kelly, Hannah G. Tan, Hyon-Xhi Juno, Jennifer A. Wheatley, Adam K. Kent, Stephen J. Aggregation by peptide conjugation rescues poor immunogenicity of the HA stem |
title | Aggregation by peptide conjugation rescues poor immunogenicity of the HA stem |
title_full | Aggregation by peptide conjugation rescues poor immunogenicity of the HA stem |
title_fullStr | Aggregation by peptide conjugation rescues poor immunogenicity of the HA stem |
title_full_unstemmed | Aggregation by peptide conjugation rescues poor immunogenicity of the HA stem |
title_short | Aggregation by peptide conjugation rescues poor immunogenicity of the HA stem |
title_sort | aggregation by peptide conjugation rescues poor immunogenicity of the ha stem |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7605677/ https://www.ncbi.nlm.nih.gov/pubmed/33137148 http://dx.doi.org/10.1371/journal.pone.0241649 |
work_keys_str_mv | AT jiangwenbo aggregationbypeptideconjugationrescuespoorimmunogenicityofthehastem AT pilkingtonemilyh aggregationbypeptideconjugationrescuespoorimmunogenicityofthehastem AT kellyhannahg aggregationbypeptideconjugationrescuespoorimmunogenicityofthehastem AT tanhyonxhi aggregationbypeptideconjugationrescuespoorimmunogenicityofthehastem AT junojennifera aggregationbypeptideconjugationrescuespoorimmunogenicityofthehastem AT wheatleyadamk aggregationbypeptideconjugationrescuespoorimmunogenicityofthehastem AT kentstephenj aggregationbypeptideconjugationrescuespoorimmunogenicityofthehastem |