Cargando…
Layer Embedding Analysis in Convolutional Neural Networks for Improved Probability Calibration and Classification
In this project, our goal is to develop a method for interpreting how a neural network makes layer-by-layer embedded decisions when trained for a classification task, and also to use this insight for improving the model performance. To do this, we first approximate the distribution of the image repr...
Autores principales: | Zhang, Fan, Dvornek, Nicha, Yang, Junlin, Chapiro, Julius, Duncan, James |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7606489/ https://www.ncbi.nlm.nih.gov/pubmed/32356739 http://dx.doi.org/10.1109/TMI.2020.2990625 |
Ejemplares similares
-
Classification of volcanic ash particles using a convolutional neural network and probability
por: Shoji, Daigo, et al.
Publicado: (2018) -
Convolutional neural networks improve fungal classification
por: Vu, Duong, et al.
Publicado: (2020) -
Cardiac Arrhythmia Classification by Multi-Layer Perceptron and Convolution Neural Networks
por: Savalia, Shalin, et al.
Publicado: (2018) -
Characterization of Early Stage Parkinson's Disease From Resting-State fMRI Data Using a Long Short-Term Memory Network
por: Guo, Xueqi, et al.
Publicado: (2022) -
Node Classification in Complex Social Graphs via Knowledge-Graph Embeddings and Convolutional Neural Network
por: Molokwu, Bonaventure C., et al.
Publicado: (2020)