Cargando…

All-optical adaptive control of quantum cascade random lasers

Spectral fingerprints of molecules are mostly accessible in the terahertz (THz) and mid-infrared ranges, such that efficient molecular-detection technologies rely on broadband coherent light sources at such frequencies. If THz Quantum Cascade Lasers can achieve octave-spanning bandwidth, their tunab...

Descripción completa

Detalles Bibliográficos
Autores principales: Schönhuber, S., Bachelard, N., Limbacher, B., Kainz, M. A., Andrews, A. M., Detz, H., Strasser, G., Darmo, J., Rotter, S., Unterrainer, K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7606519/
https://www.ncbi.nlm.nih.gov/pubmed/33139713
http://dx.doi.org/10.1038/s41467-020-19305-8
_version_ 1783604496121724928
author Schönhuber, S.
Bachelard, N.
Limbacher, B.
Kainz, M. A.
Andrews, A. M.
Detz, H.
Strasser, G.
Darmo, J.
Rotter, S.
Unterrainer, K.
author_facet Schönhuber, S.
Bachelard, N.
Limbacher, B.
Kainz, M. A.
Andrews, A. M.
Detz, H.
Strasser, G.
Darmo, J.
Rotter, S.
Unterrainer, K.
author_sort Schönhuber, S.
collection PubMed
description Spectral fingerprints of molecules are mostly accessible in the terahertz (THz) and mid-infrared ranges, such that efficient molecular-detection technologies rely on broadband coherent light sources at such frequencies. If THz Quantum Cascade Lasers can achieve octave-spanning bandwidth, their tunability and wavelength selectivity are often constrained by the geometry of their cavity. Here we introduce an adaptive control scheme for the generation of THz light in Quantum Cascade Random Lasers, whose emission spectra are reshaped by applying an optical field that restructures the permittivity of the active medium. Using a spatial light modulator combined with an optimization procedure, a beam in the near infrared (NIR) is spatially patterned to transform an initially multi-mode THz random laser into a tunable single-mode source. Moreover, we show that local NIR illumination can be used to spatially sense complex near-field interactions amongst modes. Our approach provides access to new degrees of freedom that can be harnessed to create broadly-tunable sources with interesting potential for applications like self-referenced spectroscopy.
format Online
Article
Text
id pubmed-7606519
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-76065192020-11-10 All-optical adaptive control of quantum cascade random lasers Schönhuber, S. Bachelard, N. Limbacher, B. Kainz, M. A. Andrews, A. M. Detz, H. Strasser, G. Darmo, J. Rotter, S. Unterrainer, K. Nat Commun Article Spectral fingerprints of molecules are mostly accessible in the terahertz (THz) and mid-infrared ranges, such that efficient molecular-detection technologies rely on broadband coherent light sources at such frequencies. If THz Quantum Cascade Lasers can achieve octave-spanning bandwidth, their tunability and wavelength selectivity are often constrained by the geometry of their cavity. Here we introduce an adaptive control scheme for the generation of THz light in Quantum Cascade Random Lasers, whose emission spectra are reshaped by applying an optical field that restructures the permittivity of the active medium. Using a spatial light modulator combined with an optimization procedure, a beam in the near infrared (NIR) is spatially patterned to transform an initially multi-mode THz random laser into a tunable single-mode source. Moreover, we show that local NIR illumination can be used to spatially sense complex near-field interactions amongst modes. Our approach provides access to new degrees of freedom that can be harnessed to create broadly-tunable sources with interesting potential for applications like self-referenced spectroscopy. Nature Publishing Group UK 2020-11-02 /pmc/articles/PMC7606519/ /pubmed/33139713 http://dx.doi.org/10.1038/s41467-020-19305-8 Text en © The Author(s) 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Schönhuber, S.
Bachelard, N.
Limbacher, B.
Kainz, M. A.
Andrews, A. M.
Detz, H.
Strasser, G.
Darmo, J.
Rotter, S.
Unterrainer, K.
All-optical adaptive control of quantum cascade random lasers
title All-optical adaptive control of quantum cascade random lasers
title_full All-optical adaptive control of quantum cascade random lasers
title_fullStr All-optical adaptive control of quantum cascade random lasers
title_full_unstemmed All-optical adaptive control of quantum cascade random lasers
title_short All-optical adaptive control of quantum cascade random lasers
title_sort all-optical adaptive control of quantum cascade random lasers
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7606519/
https://www.ncbi.nlm.nih.gov/pubmed/33139713
http://dx.doi.org/10.1038/s41467-020-19305-8
work_keys_str_mv AT schonhubers allopticaladaptivecontrolofquantumcascaderandomlasers
AT bachelardn allopticaladaptivecontrolofquantumcascaderandomlasers
AT limbacherb allopticaladaptivecontrolofquantumcascaderandomlasers
AT kainzma allopticaladaptivecontrolofquantumcascaderandomlasers
AT andrewsam allopticaladaptivecontrolofquantumcascaderandomlasers
AT detzh allopticaladaptivecontrolofquantumcascaderandomlasers
AT strasserg allopticaladaptivecontrolofquantumcascaderandomlasers
AT darmoj allopticaladaptivecontrolofquantumcascaderandomlasers
AT rotters allopticaladaptivecontrolofquantumcascaderandomlasers
AT unterrainerk allopticaladaptivecontrolofquantumcascaderandomlasers