Cargando…

Local tissue effects of various barrier membranes in a rat subcutaneous model

PURPOSE: The purpose of this study was to examine the local tissue reactions associated with 3 different poly(lactic-co-glycolic acid) (PLGA) prototype membranes and to compare them to the reactions associated with commercially available resorbable membranes in rats. METHODS: Seven different membran...

Descripción completa

Detalles Bibliográficos
Autores principales: Naenni, Nadja, Lim, Hyun-Chang, Strauss, Franz-Josef, Jung, Ronald E., Hämmerle, Christoph H. F., Thoma, Daniel S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Korean Academy of Periodontology 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7606894/
https://www.ncbi.nlm.nih.gov/pubmed/33124210
http://dx.doi.org/10.5051/jpis.2000380019
_version_ 1783604528378019840
author Naenni, Nadja
Lim, Hyun-Chang
Strauss, Franz-Josef
Jung, Ronald E.
Hämmerle, Christoph H. F.
Thoma, Daniel S.
author_facet Naenni, Nadja
Lim, Hyun-Chang
Strauss, Franz-Josef
Jung, Ronald E.
Hämmerle, Christoph H. F.
Thoma, Daniel S.
author_sort Naenni, Nadja
collection PubMed
description PURPOSE: The purpose of this study was to examine the local tissue reactions associated with 3 different poly(lactic-co-glycolic acid) (PLGA) prototype membranes and to compare them to the reactions associated with commercially available resorbable membranes in rats. METHODS: Seven different membranes—3 synthetic PLGA prototypes (T1, T2, and T3) and 4 commercially available membranes (a PLGA membrane, a poly[lactic acid] membrane, a native collagen membrane, and a cross-linked collagen membrane)—were randomly inserted into 6 unconnected subcutaneous pouches in the backs of 42 rats. The animals were sacrificed at 4, 13, and 26 weeks. Descriptive histologic and histomorphometric assessments were performed to evaluate membrane degradation, visibility, tissue integration, tissue ingrowth, neovascularization, encapsulation, and inflammation. Means and standard deviations were calculated. RESULTS: The histological analysis revealed complete integration and tissue ingrowth of PLGA prototype T1 at 26 weeks. In contrast, the T2 and T3 prototypes displayed slight to moderate integration and tissue ingrowth regardless of time point. The degradation patterns of the 3 synthetic prototypes were similar at 4 and 13 weeks, but differed at 26 weeks. T1 showed marked degradation at 26 weeks, whereas T2 and T3 displayed moderate degradation. Inflammatory cells were present in all 3 prototype membranes at all time points, and these membranes did not meaningfully differ from commercially available membranes with regard to the extent of inflammatory cell infiltration. CONCLUSIONS: The 3 PLGA prototypes, particularly T1, induced favorable tissue integration, exhibited a similar degradation rate to native collagen membranes, and elicited a similar inflammatory response to commercially available non–cross-linked resorbable membranes. The intensity of inflammation associated with degradable dental membranes appears to relate to their degradation kinetics, irrespective of their material composition.
format Online
Article
Text
id pubmed-7606894
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Korean Academy of Periodontology
record_format MEDLINE/PubMed
spelling pubmed-76068942020-11-05 Local tissue effects of various barrier membranes in a rat subcutaneous model Naenni, Nadja Lim, Hyun-Chang Strauss, Franz-Josef Jung, Ronald E. Hämmerle, Christoph H. F. Thoma, Daniel S. J Periodontal Implant Sci Research Article PURPOSE: The purpose of this study was to examine the local tissue reactions associated with 3 different poly(lactic-co-glycolic acid) (PLGA) prototype membranes and to compare them to the reactions associated with commercially available resorbable membranes in rats. METHODS: Seven different membranes—3 synthetic PLGA prototypes (T1, T2, and T3) and 4 commercially available membranes (a PLGA membrane, a poly[lactic acid] membrane, a native collagen membrane, and a cross-linked collagen membrane)—were randomly inserted into 6 unconnected subcutaneous pouches in the backs of 42 rats. The animals were sacrificed at 4, 13, and 26 weeks. Descriptive histologic and histomorphometric assessments were performed to evaluate membrane degradation, visibility, tissue integration, tissue ingrowth, neovascularization, encapsulation, and inflammation. Means and standard deviations were calculated. RESULTS: The histological analysis revealed complete integration and tissue ingrowth of PLGA prototype T1 at 26 weeks. In contrast, the T2 and T3 prototypes displayed slight to moderate integration and tissue ingrowth regardless of time point. The degradation patterns of the 3 synthetic prototypes were similar at 4 and 13 weeks, but differed at 26 weeks. T1 showed marked degradation at 26 weeks, whereas T2 and T3 displayed moderate degradation. Inflammatory cells were present in all 3 prototype membranes at all time points, and these membranes did not meaningfully differ from commercially available membranes with regard to the extent of inflammatory cell infiltration. CONCLUSIONS: The 3 PLGA prototypes, particularly T1, induced favorable tissue integration, exhibited a similar degradation rate to native collagen membranes, and elicited a similar inflammatory response to commercially available non–cross-linked resorbable membranes. The intensity of inflammation associated with degradable dental membranes appears to relate to their degradation kinetics, irrespective of their material composition. Korean Academy of Periodontology 2020-09-09 /pmc/articles/PMC7606894/ /pubmed/33124210 http://dx.doi.org/10.5051/jpis.2000380019 Text en Copyright © 2020. Korean Academy of Periodontology https://creativecommons.org/licenses/by-nc/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (https://creativecommons.org/licenses/by-nc/4.0/).
spellingShingle Research Article
Naenni, Nadja
Lim, Hyun-Chang
Strauss, Franz-Josef
Jung, Ronald E.
Hämmerle, Christoph H. F.
Thoma, Daniel S.
Local tissue effects of various barrier membranes in a rat subcutaneous model
title Local tissue effects of various barrier membranes in a rat subcutaneous model
title_full Local tissue effects of various barrier membranes in a rat subcutaneous model
title_fullStr Local tissue effects of various barrier membranes in a rat subcutaneous model
title_full_unstemmed Local tissue effects of various barrier membranes in a rat subcutaneous model
title_short Local tissue effects of various barrier membranes in a rat subcutaneous model
title_sort local tissue effects of various barrier membranes in a rat subcutaneous model
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7606894/
https://www.ncbi.nlm.nih.gov/pubmed/33124210
http://dx.doi.org/10.5051/jpis.2000380019
work_keys_str_mv AT naenninadja localtissueeffectsofvariousbarriermembranesinaratsubcutaneousmodel
AT limhyunchang localtissueeffectsofvariousbarriermembranesinaratsubcutaneousmodel
AT straussfranzjosef localtissueeffectsofvariousbarriermembranesinaratsubcutaneousmodel
AT jungronalde localtissueeffectsofvariousbarriermembranesinaratsubcutaneousmodel
AT hammerlechristophhf localtissueeffectsofvariousbarriermembranesinaratsubcutaneousmodel
AT thomadaniels localtissueeffectsofvariousbarriermembranesinaratsubcutaneousmodel