Cargando…
Deciphering Cancer Cell Behavior From Motility and Shape Features: Peer Prediction and Dynamic Selection to Support Cancer Diagnosis and Therapy
Cell motility varies according to intrinsic features and microenvironmental stimuli, being a signature of underlying biological phenomena. The heterogeneity in cell response, due to multilevel cell diversity especially relevant in cancer, poses a challenge in identifying the biological scenario from...
Autores principales: | D'Orazio, Michele, Corsi, Francesca, Mencattini, Arianna, Di Giuseppe, Davide, Colomba Comes, Maria, Casti, Paola, Filippi, Joanna, Di Natale, Corrado, Ghibelli, Lina, Martinelli, Eugenio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7606946/ https://www.ncbi.nlm.nih.gov/pubmed/33194709 http://dx.doi.org/10.3389/fonc.2020.580698 |
Ejemplares similares
-
A Camera Sensors-Based System to Study Drug Effects on In Vitro Motility: The Case of PC-3 Prostate Cancer Cells
por: Comes, Maria Colomba, et al.
Publicado: (2020) -
NeuriTES. Monitoring neurite changes through transfer entropy and semantic segmentation in bright-field time-lapse microscopy
por: Mencattini, Arianna, et al.
Publicado: (2021) -
Accelerating the experimental responses on cell behaviors: a long-term prediction of cell trajectories using Social Generative Adversarial Network
por: Comes, Maria Colomba, et al.
Publicado: (2020) -
Deep-Manager: a versatile tool for optimal feature selection in live-cell imaging analysis
por: Mencattini, A., et al.
Publicado: (2023) -
Discovering the hidden messages within cell trajectories using a deep learning approach for in vitro evaluation of cancer drug treatments
por: Mencattini, A., et al.
Publicado: (2020)