Cargando…

A better method for the dynamic, precise estimating of blood/haemoglobin loss based on deep learning of artificial intelligence

BACKGROUND: Dynamic and precise estimation of blood loss (EBL) is quite important for perioperative management. To date, the Triton System, based on feature extraction technology (FET), has been applied to estimate intra-operative haemoglobin (Hb) loss but is unable to directly assess the amount of...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Yu-Jie, Zhang, Li-Ge, Zhi, Hong-Yu, Zhong, Kun-Hua, He, Wen-Quan, Chen, Yang, Yang, Zhi-Yong, Chen, Lin, Bai, Xue-Hong, Qin, Xiao-Lin, Li, Dan-Feng, Wang, Dan-Dan, Gu, Jian-Teng, Ning, Jiao-Lin, Lu, Kai-Zhi, Zhang, Ju, Xia, Zheng-Yuan, Chen, Yu-Wen, Yi, Bin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: AME Publishing Company 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7607084/
https://www.ncbi.nlm.nih.gov/pubmed/33178751
http://dx.doi.org/10.21037/atm-20-1806
_version_ 1783604572213739520
author Li, Yu-Jie
Zhang, Li-Ge
Zhi, Hong-Yu
Zhong, Kun-Hua
He, Wen-Quan
Chen, Yang
Yang, Zhi-Yong
Chen, Lin
Bai, Xue-Hong
Qin, Xiao-Lin
Li, Dan-Feng
Wang, Dan-Dan
Gu, Jian-Teng
Ning, Jiao-Lin
Lu, Kai-Zhi
Zhang, Ju
Xia, Zheng-Yuan
Chen, Yu-Wen
Yi, Bin
author_facet Li, Yu-Jie
Zhang, Li-Ge
Zhi, Hong-Yu
Zhong, Kun-Hua
He, Wen-Quan
Chen, Yang
Yang, Zhi-Yong
Chen, Lin
Bai, Xue-Hong
Qin, Xiao-Lin
Li, Dan-Feng
Wang, Dan-Dan
Gu, Jian-Teng
Ning, Jiao-Lin
Lu, Kai-Zhi
Zhang, Ju
Xia, Zheng-Yuan
Chen, Yu-Wen
Yi, Bin
author_sort Li, Yu-Jie
collection PubMed
description BACKGROUND: Dynamic and precise estimation of blood loss (EBL) is quite important for perioperative management. To date, the Triton System, based on feature extraction technology (FET), has been applied to estimate intra-operative haemoglobin (Hb) loss but is unable to directly assess the amount of blood loss. We aimed to develop a method for the dynamic and precise EBL and estimate Hb loss (EHL) based on artificial intelligence (AI). METHODS: We collected surgical patients’ non-recycled blood to generate blood-soaked sponges at a set gradient of volume. After image acquisition and preprocessing, FET and densely connected convolutional networks (DenseNet) were applied for EBL and EHL. The accuracy was evaluated using R2, the mean absolute error (MAE), the mean square error (MSE), and the Bland-Altman analysis. RESULTS: For EBL, the R2, MAE and MSE for the method based on DenseNet were 0.966 (95% CI: 0.962–0.971), 0.186 (95% CI: 0.167–0.207) and 0.096 (95% CI: 0.084–0.109), respectively. For EHL, the R2, MAE and MSE for the method based on DenseNet were 0.941 (95% CI: 0.934–0.948), 0.325 (95% CI: 0.293–0.355) and 0.284 (95% CI: 0.251–0.317), respectively. The accuracies of EBL and EHL based on DenseNet were more satisfactory than that of FET. Bland-Altman analysis revealed a bias of 0.02 ml with narrow limits of agreement (LOA) (−0.47 to 0.52 mL) and of 0.05 g with narrow LOA (−0.87 to 0.97 g) between the methods based on DenseNet and actual blood loss and Hb loss. CONCLUSIONS: We developed a simpler and more accurate AI-based method for EBL and EHL, which may be more fit for surgeries primarily using sponges and with a small to medium amount of blood loss.
format Online
Article
Text
id pubmed-7607084
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher AME Publishing Company
record_format MEDLINE/PubMed
spelling pubmed-76070842020-11-10 A better method for the dynamic, precise estimating of blood/haemoglobin loss based on deep learning of artificial intelligence Li, Yu-Jie Zhang, Li-Ge Zhi, Hong-Yu Zhong, Kun-Hua He, Wen-Quan Chen, Yang Yang, Zhi-Yong Chen, Lin Bai, Xue-Hong Qin, Xiao-Lin Li, Dan-Feng Wang, Dan-Dan Gu, Jian-Teng Ning, Jiao-Lin Lu, Kai-Zhi Zhang, Ju Xia, Zheng-Yuan Chen, Yu-Wen Yi, Bin Ann Transl Med Original Article BACKGROUND: Dynamic and precise estimation of blood loss (EBL) is quite important for perioperative management. To date, the Triton System, based on feature extraction technology (FET), has been applied to estimate intra-operative haemoglobin (Hb) loss but is unable to directly assess the amount of blood loss. We aimed to develop a method for the dynamic and precise EBL and estimate Hb loss (EHL) based on artificial intelligence (AI). METHODS: We collected surgical patients’ non-recycled blood to generate blood-soaked sponges at a set gradient of volume. After image acquisition and preprocessing, FET and densely connected convolutional networks (DenseNet) were applied for EBL and EHL. The accuracy was evaluated using R2, the mean absolute error (MAE), the mean square error (MSE), and the Bland-Altman analysis. RESULTS: For EBL, the R2, MAE and MSE for the method based on DenseNet were 0.966 (95% CI: 0.962–0.971), 0.186 (95% CI: 0.167–0.207) and 0.096 (95% CI: 0.084–0.109), respectively. For EHL, the R2, MAE and MSE for the method based on DenseNet were 0.941 (95% CI: 0.934–0.948), 0.325 (95% CI: 0.293–0.355) and 0.284 (95% CI: 0.251–0.317), respectively. The accuracies of EBL and EHL based on DenseNet were more satisfactory than that of FET. Bland-Altman analysis revealed a bias of 0.02 ml with narrow limits of agreement (LOA) (−0.47 to 0.52 mL) and of 0.05 g with narrow LOA (−0.87 to 0.97 g) between the methods based on DenseNet and actual blood loss and Hb loss. CONCLUSIONS: We developed a simpler and more accurate AI-based method for EBL and EHL, which may be more fit for surgeries primarily using sponges and with a small to medium amount of blood loss. AME Publishing Company 2020-10 /pmc/articles/PMC7607084/ /pubmed/33178751 http://dx.doi.org/10.21037/atm-20-1806 Text en 2020 Annals of Translational Medicine. All rights reserved. https://creativecommons.org/licenses/by-nc-nd/4.0/Open Access Statement: This is an Open Access article distributed in accordance with the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International License (CC BY-NC-ND 4.0), which permits the non-commercial replication and distribution of the article with the strict proviso that no changes or edits are made and the original work is properly cited (including links to both the formal publication through the relevant DOI and the license). See: https://creativecommons.org/licenses/by-nc-nd/4.0 (https://creativecommons.org/licenses/by-nc-nd/4.0/) .
spellingShingle Original Article
Li, Yu-Jie
Zhang, Li-Ge
Zhi, Hong-Yu
Zhong, Kun-Hua
He, Wen-Quan
Chen, Yang
Yang, Zhi-Yong
Chen, Lin
Bai, Xue-Hong
Qin, Xiao-Lin
Li, Dan-Feng
Wang, Dan-Dan
Gu, Jian-Teng
Ning, Jiao-Lin
Lu, Kai-Zhi
Zhang, Ju
Xia, Zheng-Yuan
Chen, Yu-Wen
Yi, Bin
A better method for the dynamic, precise estimating of blood/haemoglobin loss based on deep learning of artificial intelligence
title A better method for the dynamic, precise estimating of blood/haemoglobin loss based on deep learning of artificial intelligence
title_full A better method for the dynamic, precise estimating of blood/haemoglobin loss based on deep learning of artificial intelligence
title_fullStr A better method for the dynamic, precise estimating of blood/haemoglobin loss based on deep learning of artificial intelligence
title_full_unstemmed A better method for the dynamic, precise estimating of blood/haemoglobin loss based on deep learning of artificial intelligence
title_short A better method for the dynamic, precise estimating of blood/haemoglobin loss based on deep learning of artificial intelligence
title_sort better method for the dynamic, precise estimating of blood/haemoglobin loss based on deep learning of artificial intelligence
topic Original Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7607084/
https://www.ncbi.nlm.nih.gov/pubmed/33178751
http://dx.doi.org/10.21037/atm-20-1806
work_keys_str_mv AT liyujie abettermethodforthedynamicpreciseestimatingofbloodhaemoglobinlossbasedondeeplearningofartificialintelligence
AT zhanglige abettermethodforthedynamicpreciseestimatingofbloodhaemoglobinlossbasedondeeplearningofartificialintelligence
AT zhihongyu abettermethodforthedynamicpreciseestimatingofbloodhaemoglobinlossbasedondeeplearningofartificialintelligence
AT zhongkunhua abettermethodforthedynamicpreciseestimatingofbloodhaemoglobinlossbasedondeeplearningofartificialintelligence
AT hewenquan abettermethodforthedynamicpreciseestimatingofbloodhaemoglobinlossbasedondeeplearningofartificialintelligence
AT chenyang abettermethodforthedynamicpreciseestimatingofbloodhaemoglobinlossbasedondeeplearningofartificialintelligence
AT yangzhiyong abettermethodforthedynamicpreciseestimatingofbloodhaemoglobinlossbasedondeeplearningofartificialintelligence
AT chenlin abettermethodforthedynamicpreciseestimatingofbloodhaemoglobinlossbasedondeeplearningofartificialintelligence
AT baixuehong abettermethodforthedynamicpreciseestimatingofbloodhaemoglobinlossbasedondeeplearningofartificialintelligence
AT qinxiaolin abettermethodforthedynamicpreciseestimatingofbloodhaemoglobinlossbasedondeeplearningofartificialintelligence
AT lidanfeng abettermethodforthedynamicpreciseestimatingofbloodhaemoglobinlossbasedondeeplearningofartificialintelligence
AT wangdandan abettermethodforthedynamicpreciseestimatingofbloodhaemoglobinlossbasedondeeplearningofartificialintelligence
AT gujianteng abettermethodforthedynamicpreciseestimatingofbloodhaemoglobinlossbasedondeeplearningofartificialintelligence
AT ningjiaolin abettermethodforthedynamicpreciseestimatingofbloodhaemoglobinlossbasedondeeplearningofartificialintelligence
AT lukaizhi abettermethodforthedynamicpreciseestimatingofbloodhaemoglobinlossbasedondeeplearningofartificialintelligence
AT zhangju abettermethodforthedynamicpreciseestimatingofbloodhaemoglobinlossbasedondeeplearningofartificialintelligence
AT xiazhengyuan abettermethodforthedynamicpreciseestimatingofbloodhaemoglobinlossbasedondeeplearningofartificialintelligence
AT chenyuwen abettermethodforthedynamicpreciseestimatingofbloodhaemoglobinlossbasedondeeplearningofartificialintelligence
AT yibin abettermethodforthedynamicpreciseestimatingofbloodhaemoglobinlossbasedondeeplearningofartificialintelligence
AT liyujie bettermethodforthedynamicpreciseestimatingofbloodhaemoglobinlossbasedondeeplearningofartificialintelligence
AT zhanglige bettermethodforthedynamicpreciseestimatingofbloodhaemoglobinlossbasedondeeplearningofartificialintelligence
AT zhihongyu bettermethodforthedynamicpreciseestimatingofbloodhaemoglobinlossbasedondeeplearningofartificialintelligence
AT zhongkunhua bettermethodforthedynamicpreciseestimatingofbloodhaemoglobinlossbasedondeeplearningofartificialintelligence
AT hewenquan bettermethodforthedynamicpreciseestimatingofbloodhaemoglobinlossbasedondeeplearningofartificialintelligence
AT chenyang bettermethodforthedynamicpreciseestimatingofbloodhaemoglobinlossbasedondeeplearningofartificialintelligence
AT yangzhiyong bettermethodforthedynamicpreciseestimatingofbloodhaemoglobinlossbasedondeeplearningofartificialintelligence
AT chenlin bettermethodforthedynamicpreciseestimatingofbloodhaemoglobinlossbasedondeeplearningofartificialintelligence
AT baixuehong bettermethodforthedynamicpreciseestimatingofbloodhaemoglobinlossbasedondeeplearningofartificialintelligence
AT qinxiaolin bettermethodforthedynamicpreciseestimatingofbloodhaemoglobinlossbasedondeeplearningofartificialintelligence
AT lidanfeng bettermethodforthedynamicpreciseestimatingofbloodhaemoglobinlossbasedondeeplearningofartificialintelligence
AT wangdandan bettermethodforthedynamicpreciseestimatingofbloodhaemoglobinlossbasedondeeplearningofartificialintelligence
AT gujianteng bettermethodforthedynamicpreciseestimatingofbloodhaemoglobinlossbasedondeeplearningofartificialintelligence
AT ningjiaolin bettermethodforthedynamicpreciseestimatingofbloodhaemoglobinlossbasedondeeplearningofartificialintelligence
AT lukaizhi bettermethodforthedynamicpreciseestimatingofbloodhaemoglobinlossbasedondeeplearningofartificialintelligence
AT zhangju bettermethodforthedynamicpreciseestimatingofbloodhaemoglobinlossbasedondeeplearningofartificialintelligence
AT xiazhengyuan bettermethodforthedynamicpreciseestimatingofbloodhaemoglobinlossbasedondeeplearningofartificialintelligence
AT chenyuwen bettermethodforthedynamicpreciseestimatingofbloodhaemoglobinlossbasedondeeplearningofartificialintelligence
AT yibin bettermethodforthedynamicpreciseestimatingofbloodhaemoglobinlossbasedondeeplearningofartificialintelligence