Cargando…
The Ras-ERK signaling pathway regulates acetylated activating transcription factor 2 via p300 in pancreatic cancer cells
BACKGROUND: Activating transcription factor 2 (ATF2) regulates the expression of downstream target genes and is phosphorylated by the Ras-extracellular-signal-regulated kinase (ERK) pathway. Acetylation of ATF2 is necessary for this type of regulation. However, the molecular mechanism by which the R...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AME Publishing Company
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7607129/ https://www.ncbi.nlm.nih.gov/pubmed/33178766 http://dx.doi.org/10.21037/atm-20-5880 |
_version_ | 1783604582741442560 |
---|---|
author | Li, Mu Song, Shao-Wei Ge, Yang Jin, Jun-Yi Li, Xiao-Ying Tan, Xiao-Dong |
author_facet | Li, Mu Song, Shao-Wei Ge, Yang Jin, Jun-Yi Li, Xiao-Ying Tan, Xiao-Dong |
author_sort | Li, Mu |
collection | PubMed |
description | BACKGROUND: Activating transcription factor 2 (ATF2) regulates the expression of downstream target genes and is phosphorylated by the Ras-extracellular-signal-regulated kinase (ERK) pathway. Acetylation of ATF2 is necessary for this type of regulation. However, the molecular mechanism by which the Ras-ERK pathway mediates the regulation of acetylated ATF2 is unknown. This study investigates the mechanism of Ras-ERK pathway-mediated regulation of acetylated ATF2 in maintaining the characteristic phenotype of pancreatic cancer cells. METHODS: This study was carried out using ASPC-1 and BXPC-3 pancreatic cancer cell lines transfected with the double mutant Ras(G12V/T35S). The levels of phosphorylated ERK1/2 were measured to establish the activated Ras-ERK pathway. The regulation of acetylated ATF2 was examined by detecting the protein level using western blotting, and the effects on cancer cell phenotype were measured using cell viability, proliferation, migration, and apoptosis assays. Also, chromatin immunoprecipitation (ChIP) assays were used to measure the effect on respective downstream target genes. RESULTS: The results showed that Ras(G12V/T35S) reduced the level of acetylated ATF2 in ASPC-1 and BXPC-3 cells. Compared to wild-type ATF2, the mutant ATF2(K357Q) (which mimics the irreversible acetylated form of ATF2) reduced the cancer cell phenotype and showed decreased enrichment on target genes upon transfection with Ras. Moreover, the level of acetylated ATF2 was regulated by the degradation of p300 through E3 ubiquitin ligase mouse double minute 2 homolog (MDM2). CONCLUSIONS: Activation of the Ras-ERK pathway regulates acetylated ATF2 through degradation of p300 via a proteasome-dependent pathway, which alters the transcription of downstream target genes responsible for the cancer cell phenotype. |
format | Online Article Text |
id | pubmed-7607129 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | AME Publishing Company |
record_format | MEDLINE/PubMed |
spelling | pubmed-76071292020-11-10 The Ras-ERK signaling pathway regulates acetylated activating transcription factor 2 via p300 in pancreatic cancer cells Li, Mu Song, Shao-Wei Ge, Yang Jin, Jun-Yi Li, Xiao-Ying Tan, Xiao-Dong Ann Transl Med Original Article BACKGROUND: Activating transcription factor 2 (ATF2) regulates the expression of downstream target genes and is phosphorylated by the Ras-extracellular-signal-regulated kinase (ERK) pathway. Acetylation of ATF2 is necessary for this type of regulation. However, the molecular mechanism by which the Ras-ERK pathway mediates the regulation of acetylated ATF2 is unknown. This study investigates the mechanism of Ras-ERK pathway-mediated regulation of acetylated ATF2 in maintaining the characteristic phenotype of pancreatic cancer cells. METHODS: This study was carried out using ASPC-1 and BXPC-3 pancreatic cancer cell lines transfected with the double mutant Ras(G12V/T35S). The levels of phosphorylated ERK1/2 were measured to establish the activated Ras-ERK pathway. The regulation of acetylated ATF2 was examined by detecting the protein level using western blotting, and the effects on cancer cell phenotype were measured using cell viability, proliferation, migration, and apoptosis assays. Also, chromatin immunoprecipitation (ChIP) assays were used to measure the effect on respective downstream target genes. RESULTS: The results showed that Ras(G12V/T35S) reduced the level of acetylated ATF2 in ASPC-1 and BXPC-3 cells. Compared to wild-type ATF2, the mutant ATF2(K357Q) (which mimics the irreversible acetylated form of ATF2) reduced the cancer cell phenotype and showed decreased enrichment on target genes upon transfection with Ras. Moreover, the level of acetylated ATF2 was regulated by the degradation of p300 through E3 ubiquitin ligase mouse double minute 2 homolog (MDM2). CONCLUSIONS: Activation of the Ras-ERK pathway regulates acetylated ATF2 through degradation of p300 via a proteasome-dependent pathway, which alters the transcription of downstream target genes responsible for the cancer cell phenotype. AME Publishing Company 2020-10 /pmc/articles/PMC7607129/ /pubmed/33178766 http://dx.doi.org/10.21037/atm-20-5880 Text en 2020 Annals of Translational Medicine. All rights reserved. https://creativecommons.org/licenses/by-nc-nd/4.0/Open Access Statement: This is an Open Access article distributed in accordance with the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International License (CC BY-NC-ND 4.0), which permits the non-commercial replication and distribution of the article with the strict proviso that no changes or edits are made and the original work is properly cited (including links to both the formal publication through the relevant DOI and the license). See: https://creativecommons.org/licenses/by-nc-nd/4.0 (https://creativecommons.org/licenses/by-nc-nd/4.0/) . |
spellingShingle | Original Article Li, Mu Song, Shao-Wei Ge, Yang Jin, Jun-Yi Li, Xiao-Ying Tan, Xiao-Dong The Ras-ERK signaling pathway regulates acetylated activating transcription factor 2 via p300 in pancreatic cancer cells |
title | The Ras-ERK signaling pathway regulates acetylated activating transcription factor 2 via p300 in pancreatic cancer cells |
title_full | The Ras-ERK signaling pathway regulates acetylated activating transcription factor 2 via p300 in pancreatic cancer cells |
title_fullStr | The Ras-ERK signaling pathway regulates acetylated activating transcription factor 2 via p300 in pancreatic cancer cells |
title_full_unstemmed | The Ras-ERK signaling pathway regulates acetylated activating transcription factor 2 via p300 in pancreatic cancer cells |
title_short | The Ras-ERK signaling pathway regulates acetylated activating transcription factor 2 via p300 in pancreatic cancer cells |
title_sort | ras-erk signaling pathway regulates acetylated activating transcription factor 2 via p300 in pancreatic cancer cells |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7607129/ https://www.ncbi.nlm.nih.gov/pubmed/33178766 http://dx.doi.org/10.21037/atm-20-5880 |
work_keys_str_mv | AT limu theraserksignalingpathwayregulatesacetylatedactivatingtranscriptionfactor2viap300inpancreaticcancercells AT songshaowei theraserksignalingpathwayregulatesacetylatedactivatingtranscriptionfactor2viap300inpancreaticcancercells AT geyang theraserksignalingpathwayregulatesacetylatedactivatingtranscriptionfactor2viap300inpancreaticcancercells AT jinjunyi theraserksignalingpathwayregulatesacetylatedactivatingtranscriptionfactor2viap300inpancreaticcancercells AT lixiaoying theraserksignalingpathwayregulatesacetylatedactivatingtranscriptionfactor2viap300inpancreaticcancercells AT tanxiaodong theraserksignalingpathwayregulatesacetylatedactivatingtranscriptionfactor2viap300inpancreaticcancercells AT limu raserksignalingpathwayregulatesacetylatedactivatingtranscriptionfactor2viap300inpancreaticcancercells AT songshaowei raserksignalingpathwayregulatesacetylatedactivatingtranscriptionfactor2viap300inpancreaticcancercells AT geyang raserksignalingpathwayregulatesacetylatedactivatingtranscriptionfactor2viap300inpancreaticcancercells AT jinjunyi raserksignalingpathwayregulatesacetylatedactivatingtranscriptionfactor2viap300inpancreaticcancercells AT lixiaoying raserksignalingpathwayregulatesacetylatedactivatingtranscriptionfactor2viap300inpancreaticcancercells AT tanxiaodong raserksignalingpathwayregulatesacetylatedactivatingtranscriptionfactor2viap300inpancreaticcancercells |