Cargando…

Ubiquitination modification: critical regulation of IRF family stability and activity

Interferon regulatory factors (IRFs) play pivotal and critical roles in innate and adaptive immune responses; thus, precise and stringent regulation of the stability and activation of IRFs in physiological processes is necessary. The stability and activities of IRFs are directly or indirectly target...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Bao-qin, Jin, Jin, Li, Yi-yuan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Science China Press 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7607542/
https://www.ncbi.nlm.nih.gov/pubmed/33141302
http://dx.doi.org/10.1007/s11427-020-1796-0
Descripción
Sumario:Interferon regulatory factors (IRFs) play pivotal and critical roles in innate and adaptive immune responses; thus, precise and stringent regulation of the stability and activation of IRFs in physiological processes is necessary. The stability and activities of IRFs are directly or indirectly targeted by endogenous and exogenous proteins in an ubiquitin-dependent manner. However, few reviews have summarized how host E3 ligases/DUBs or viral proteins regulate IRF stability and activity. Additionally, with recent technological developments, details about the ubiquitination of IRFs have been continuously revealed. As knowledge of how these proteins function and interact with IRFs may facilitate a better understanding of the regulation of IRFs in immune responses or other biological processes, we summarized current studies on the direct ubiquitination of IRFs, with an emphasis on how these proteins interact with IRFs and affect their activities, which may provide exciting targets for drug development by regulating the functions of specific E3 ligases.