Cargando…

Interpretation of morphogen gradients by a synthetic bistable circuit

During development, cells gain positional information through the interpretation of dynamic morphogen gradients. A proposed mechanism for interpreting opposing morphogen gradients is mutual inhibition of downstream transcription factors, but isolating the role of this specific motif within a natural...

Descripción completa

Detalles Bibliográficos
Autores principales: Grant, Paul K., Szep, Gregory, Patange, Om, Halatek, Jacob, Coppard, Valerie, Csikász-Nagy, Attila, Haseloff, Jim, Locke, James C. W., Dalchau, Neil, Phillips, Andrew
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7608687/
https://www.ncbi.nlm.nih.gov/pubmed/33139718
http://dx.doi.org/10.1038/s41467-020-19098-w
_version_ 1783604887863427072
author Grant, Paul K.
Szep, Gregory
Patange, Om
Halatek, Jacob
Coppard, Valerie
Csikász-Nagy, Attila
Haseloff, Jim
Locke, James C. W.
Dalchau, Neil
Phillips, Andrew
author_facet Grant, Paul K.
Szep, Gregory
Patange, Om
Halatek, Jacob
Coppard, Valerie
Csikász-Nagy, Attila
Haseloff, Jim
Locke, James C. W.
Dalchau, Neil
Phillips, Andrew
author_sort Grant, Paul K.
collection PubMed
description During development, cells gain positional information through the interpretation of dynamic morphogen gradients. A proposed mechanism for interpreting opposing morphogen gradients is mutual inhibition of downstream transcription factors, but isolating the role of this specific motif within a natural network remains a challenge. Here, we engineer a synthetic morphogen-induced mutual inhibition circuit in E. coli populations and show that mutual inhibition alone is sufficient to produce stable domains of gene expression in response to dynamic morphogen gradients, provided the spatial average of the morphogens falls within the region of bistability at the single cell level. When we add sender devices, the resulting patterning circuit produces theoretically predicted self-organised gene expression domains in response to a single gradient. We develop computational models of our synthetic circuits parameterised to timecourse fluorescence data, providing both a theoretical and experimental framework for engineering morphogen-induced spatial patterning in cell populations.
format Online
Article
Text
id pubmed-7608687
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-76086872020-11-10 Interpretation of morphogen gradients by a synthetic bistable circuit Grant, Paul K. Szep, Gregory Patange, Om Halatek, Jacob Coppard, Valerie Csikász-Nagy, Attila Haseloff, Jim Locke, James C. W. Dalchau, Neil Phillips, Andrew Nat Commun Article During development, cells gain positional information through the interpretation of dynamic morphogen gradients. A proposed mechanism for interpreting opposing morphogen gradients is mutual inhibition of downstream transcription factors, but isolating the role of this specific motif within a natural network remains a challenge. Here, we engineer a synthetic morphogen-induced mutual inhibition circuit in E. coli populations and show that mutual inhibition alone is sufficient to produce stable domains of gene expression in response to dynamic morphogen gradients, provided the spatial average of the morphogens falls within the region of bistability at the single cell level. When we add sender devices, the resulting patterning circuit produces theoretically predicted self-organised gene expression domains in response to a single gradient. We develop computational models of our synthetic circuits parameterised to timecourse fluorescence data, providing both a theoretical and experimental framework for engineering morphogen-induced spatial patterning in cell populations. Nature Publishing Group UK 2020-11-02 /pmc/articles/PMC7608687/ /pubmed/33139718 http://dx.doi.org/10.1038/s41467-020-19098-w Text en © The Author(s) 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Grant, Paul K.
Szep, Gregory
Patange, Om
Halatek, Jacob
Coppard, Valerie
Csikász-Nagy, Attila
Haseloff, Jim
Locke, James C. W.
Dalchau, Neil
Phillips, Andrew
Interpretation of morphogen gradients by a synthetic bistable circuit
title Interpretation of morphogen gradients by a synthetic bistable circuit
title_full Interpretation of morphogen gradients by a synthetic bistable circuit
title_fullStr Interpretation of morphogen gradients by a synthetic bistable circuit
title_full_unstemmed Interpretation of morphogen gradients by a synthetic bistable circuit
title_short Interpretation of morphogen gradients by a synthetic bistable circuit
title_sort interpretation of morphogen gradients by a synthetic bistable circuit
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7608687/
https://www.ncbi.nlm.nih.gov/pubmed/33139718
http://dx.doi.org/10.1038/s41467-020-19098-w
work_keys_str_mv AT grantpaulk interpretationofmorphogengradientsbyasyntheticbistablecircuit
AT szepgregory interpretationofmorphogengradientsbyasyntheticbistablecircuit
AT patangeom interpretationofmorphogengradientsbyasyntheticbistablecircuit
AT halatekjacob interpretationofmorphogengradientsbyasyntheticbistablecircuit
AT coppardvalerie interpretationofmorphogengradientsbyasyntheticbistablecircuit
AT csikasznagyattila interpretationofmorphogengradientsbyasyntheticbistablecircuit
AT haseloffjim interpretationofmorphogengradientsbyasyntheticbistablecircuit
AT lockejamescw interpretationofmorphogengradientsbyasyntheticbistablecircuit
AT dalchauneil interpretationofmorphogengradientsbyasyntheticbistablecircuit
AT phillipsandrew interpretationofmorphogengradientsbyasyntheticbistablecircuit