Cargando…
Learning for single-cell assignment
Efficient single-cell assignment without prior marker gene annotations is essential for single-cell sequencing data analysis. Current methods, however, have limited effectiveness for distinct single-cell assignment. They failed to achieve a well-generalized performance in different tasks because of...
Autores principales: | Duan, Bin, Zhu, Chenyu, Chuai, Guohui, Tang, Chen, Chen, Xiaohan, Chen, Shaoqi, Fu, Shaliu, Li, Gaoyang, Liu, Qi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7608777/ https://www.ncbi.nlm.nih.gov/pubmed/33127686 http://dx.doi.org/10.1126/sciadv.abd0855 |
Ejemplares similares
-
Integrating multiple references for single-cell assignment
por: Duan, Bin, et al.
Publicado: (2021) -
A deep generative model for multi-view profiling of single-cell RNA-seq and ATAC-seq data
por: Li, Gaoyang, et al.
Publicado: (2022) -
Personalized tumor combination therapy optimization using the single-cell transcriptome
por: Tang, Chen, et al.
Publicado: (2023) -
Privacy-preserving integration of multiple institutional data for single-cell type identification with scPrivacy
por: Chen, Shaoqi, et al.
Publicado: (2022) -
DrSim: Similarity Learning for Transcriptional Phenotypic Drug Discovery
por: Wei, Zhiting, et al.
Publicado: (2022)