Cargando…
Microscopic scan-free surface profiling over extended axial ranges by point-spread-function engineering
The shape of a surface, i.e., its topography, influences many functional properties of a material; hence, characterization is critical in a wide variety of applications. Two notable challenges are profiling temporally changing structures, which requires high-speed acquisition, and capturing geometri...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7608779/ https://www.ncbi.nlm.nih.gov/pubmed/33115742 http://dx.doi.org/10.1126/sciadv.abc0332 |
Sumario: | The shape of a surface, i.e., its topography, influences many functional properties of a material; hence, characterization is critical in a wide variety of applications. Two notable challenges are profiling temporally changing structures, which requires high-speed acquisition, and capturing geometries with large axial steps. Here, we leverage point-spread-function engineering for scan-free, dynamic, microsurface profiling. The presented method is robust to axial steps and acquires full fields of view at camera-limited framerates. We present two approaches for implementation: fluorescence-based and label-free surface profiling, demonstrating the applicability to a variety of sample geometries and surface types. |
---|