Cargando…
Prediction of Flight Time Deviation for Lithuanian Airports Using Supervised Machine Learning Model
In the paper, the flight time deviation of Lithuania airports has been analyzed. The supervised machine learning model has been implemented to predict the interval of time delay deviation of new flights. The analysis has been made using seven algorithms: probabilistic neural network, multilayer perc...
Autores principales: | Stefanovič, Pavel, Štrimaitis, Rokas, Kurasova, Olga |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7609144/ https://www.ncbi.nlm.nih.gov/pubmed/33178261 http://dx.doi.org/10.1155/2020/8878681 |
Ejemplares similares
-
A Combined Approach for Multi-Label Text Data Classification
por: Štrimaitis, Rokas, et al.
Publicado: (2022) -
Environmental inefficiencies for arrival flights at European airports
por: Olive, Xavier, et al.
Publicado: (2023) -
The propagation of European airports’ on-time performance and on-time flights via air connectivity prior to the Covid-19 pandemic
por: Lin, Pei-Chun
Publicado: (2023) -
Predictive Supervised Machine Learning Models for Diabetes Mellitus
por: Muhammad, L. J., et al.
Publicado: (2020) -
Airport noise predicts song timing of European birds
por: Dominoni, Davide M., et al.
Publicado: (2016)