Cargando…

Aligning AI Optimization to Community Well-Being

This paper investigates incorporating community well-being metrics into the objectives of optimization algorithms and the teams that build them. It documents two cases where a large platform appears to have modified their system to this end. Facebook incorporated “well-being” metrics in 2017, while...

Descripción completa

Detalles Bibliográficos
Autor principal: Stray, Jonathan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7610010/
https://www.ncbi.nlm.nih.gov/pubmed/34723107
http://dx.doi.org/10.1007/s42413-020-00086-3
Descripción
Sumario:This paper investigates incorporating community well-being metrics into the objectives of optimization algorithms and the teams that build them. It documents two cases where a large platform appears to have modified their system to this end. Facebook incorporated “well-being” metrics in 2017, while YouTube began integrating “user satisfaction” metrics around 2015. Metrics tied to community well-being outcomes could also be used in many other systems, such as a news recommendation system that tries to increase exposure to diverse views, or a product recommendation system that opstimizes for the carbon footprint of purchased products. Generalizing from these examples and incorporating insights from participatory design and AI governance leads to a proposed process for integrating community well-being into commercial AI systems: identify and involve the affected community, choose a useful metric, use this metric as a managerial performance measure and/or an algorithmic objective, and evaluate and adapt to outcomes. Important open questions include the best approach to community participation and the uncertain business effects of this process.