Cargando…
CatBoost for big data: an interdisciplinary review
Gradient Boosted Decision Trees (GBDT’s) are a powerful tool for classification and regression tasks in Big Data. Researchers should be familiar with the strengths and weaknesses of current implementations of GBDT’s in order to use them effectively and make successful contributions. CatBoost is a me...
Autores principales: | Hancock, John T., Khoshgoftaar, Taghi M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7610170/ https://www.ncbi.nlm.nih.gov/pubmed/33169094 http://dx.doi.org/10.1186/s40537-020-00369-8 |
Ejemplares similares
-
Text Data Augmentation for Deep Learning
por: Shorten, Connor, et al.
Publicado: (2021) -
Deep Learning applications for COVID-19
por: Shorten, Connor, et al.
Publicado: (2021) -
An Improved CatBoost-Based Classification Model for Ecological Suitability of Blueberries
por: Chang, Wenfeng, et al.
Publicado: (2023) -
Research on Wind Turbine Fault Detection Based on the Fusion of ASL-CatBoost and TtRSA
por: Kong, Lingchao, et al.
Publicado: (2023) -
The evolution of Big Data in neuroscience and neurology
por: Dipietro, Laura, et al.
Publicado: (2023)