Cargando…

Impact of Na Doping on the Carrier Transport Path in Polycrystalline Flexible Cu(2)ZnSn(S,Se)(4) Solar Cells

It is well‐known that the alkali doping of polycrystalline Cu(2)ZnSn(S,Se)(4) (CZTSSe) and Cu(In,Ga)(Se,S)(2) has a beneficial influence on the device performance and there are various hypotheses about the principles of performance improvement. This work clearly explains the effect of Na doping on t...

Descripción completa

Detalles Bibliográficos
Autores principales: Jeong, Woo‐Lim, Kim, Kyung‐Pil, Kim, Juran, Park, Ha Kyung, Min, Jung‐Hong, Lee, Je‐Sung, Mun, Seung‐Hyun, Kim, Sung‐Tae, Jang, Jae‐Hyung, Jo, William, Lee, Dong‐Seon
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7610331/
https://www.ncbi.nlm.nih.gov/pubmed/33173721
http://dx.doi.org/10.1002/advs.201903085
_version_ 1783605174774792192
author Jeong, Woo‐Lim
Kim, Kyung‐Pil
Kim, Juran
Park, Ha Kyung
Min, Jung‐Hong
Lee, Je‐Sung
Mun, Seung‐Hyun
Kim, Sung‐Tae
Jang, Jae‐Hyung
Jo, William
Lee, Dong‐Seon
author_facet Jeong, Woo‐Lim
Kim, Kyung‐Pil
Kim, Juran
Park, Ha Kyung
Min, Jung‐Hong
Lee, Je‐Sung
Mun, Seung‐Hyun
Kim, Sung‐Tae
Jang, Jae‐Hyung
Jo, William
Lee, Dong‐Seon
author_sort Jeong, Woo‐Lim
collection PubMed
description It is well‐known that the alkali doping of polycrystalline Cu(2)ZnSn(S,Se)(4) (CZTSSe) and Cu(In,Ga)(Se,S)(2) has a beneficial influence on the device performance and there are various hypotheses about the principles of performance improvement. This work clearly explains the effect of Na doping on the fill factor (FF) rather than on all of the solar cell parameters (open‐circuit voltage, FF, and sometimes short circuit current) for overall performance improvement. When doping is optimized, the fabricated device shows sufficient built‐in potential and selects a better carrier transport path by the high potential difference between the intragrains and the grain boundaries. On the other hand, when doping is excessive, the device shows low contact potential difference and FF and selects a worse carrier transport path even though the built‐in potential becomes stronger. The fabricated CZTSSe solar cell on a flexible metal foil optimized with a 25 nm thick NaF doping layer achieves an FF of 62.63%, thereby clearly showing the enhancing effect of Na doping.
format Online
Article
Text
id pubmed-7610331
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-76103312020-11-09 Impact of Na Doping on the Carrier Transport Path in Polycrystalline Flexible Cu(2)ZnSn(S,Se)(4) Solar Cells Jeong, Woo‐Lim Kim, Kyung‐Pil Kim, Juran Park, Ha Kyung Min, Jung‐Hong Lee, Je‐Sung Mun, Seung‐Hyun Kim, Sung‐Tae Jang, Jae‐Hyung Jo, William Lee, Dong‐Seon Adv Sci (Weinh) Full Papers It is well‐known that the alkali doping of polycrystalline Cu(2)ZnSn(S,Se)(4) (CZTSSe) and Cu(In,Ga)(Se,S)(2) has a beneficial influence on the device performance and there are various hypotheses about the principles of performance improvement. This work clearly explains the effect of Na doping on the fill factor (FF) rather than on all of the solar cell parameters (open‐circuit voltage, FF, and sometimes short circuit current) for overall performance improvement. When doping is optimized, the fabricated device shows sufficient built‐in potential and selects a better carrier transport path by the high potential difference between the intragrains and the grain boundaries. On the other hand, when doping is excessive, the device shows low contact potential difference and FF and selects a worse carrier transport path even though the built‐in potential becomes stronger. The fabricated CZTSSe solar cell on a flexible metal foil optimized with a 25 nm thick NaF doping layer achieves an FF of 62.63%, thereby clearly showing the enhancing effect of Na doping. John Wiley and Sons Inc. 2020-09-27 /pmc/articles/PMC7610331/ /pubmed/33173721 http://dx.doi.org/10.1002/advs.201903085 Text en © 2020 The Authors. Published by Wiley‐VCH GmbH This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Full Papers
Jeong, Woo‐Lim
Kim, Kyung‐Pil
Kim, Juran
Park, Ha Kyung
Min, Jung‐Hong
Lee, Je‐Sung
Mun, Seung‐Hyun
Kim, Sung‐Tae
Jang, Jae‐Hyung
Jo, William
Lee, Dong‐Seon
Impact of Na Doping on the Carrier Transport Path in Polycrystalline Flexible Cu(2)ZnSn(S,Se)(4) Solar Cells
title Impact of Na Doping on the Carrier Transport Path in Polycrystalline Flexible Cu(2)ZnSn(S,Se)(4) Solar Cells
title_full Impact of Na Doping on the Carrier Transport Path in Polycrystalline Flexible Cu(2)ZnSn(S,Se)(4) Solar Cells
title_fullStr Impact of Na Doping on the Carrier Transport Path in Polycrystalline Flexible Cu(2)ZnSn(S,Se)(4) Solar Cells
title_full_unstemmed Impact of Na Doping on the Carrier Transport Path in Polycrystalline Flexible Cu(2)ZnSn(S,Se)(4) Solar Cells
title_short Impact of Na Doping on the Carrier Transport Path in Polycrystalline Flexible Cu(2)ZnSn(S,Se)(4) Solar Cells
title_sort impact of na doping on the carrier transport path in polycrystalline flexible cu(2)znsn(s,se)(4) solar cells
topic Full Papers
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7610331/
https://www.ncbi.nlm.nih.gov/pubmed/33173721
http://dx.doi.org/10.1002/advs.201903085
work_keys_str_mv AT jeongwoolim impactofnadopingonthecarriertransportpathinpolycrystallineflexiblecu2znsnsse4solarcells
AT kimkyungpil impactofnadopingonthecarriertransportpathinpolycrystallineflexiblecu2znsnsse4solarcells
AT kimjuran impactofnadopingonthecarriertransportpathinpolycrystallineflexiblecu2znsnsse4solarcells
AT parkhakyung impactofnadopingonthecarriertransportpathinpolycrystallineflexiblecu2znsnsse4solarcells
AT minjunghong impactofnadopingonthecarriertransportpathinpolycrystallineflexiblecu2znsnsse4solarcells
AT leejesung impactofnadopingonthecarriertransportpathinpolycrystallineflexiblecu2znsnsse4solarcells
AT munseunghyun impactofnadopingonthecarriertransportpathinpolycrystallineflexiblecu2znsnsse4solarcells
AT kimsungtae impactofnadopingonthecarriertransportpathinpolycrystallineflexiblecu2znsnsse4solarcells
AT jangjaehyung impactofnadopingonthecarriertransportpathinpolycrystallineflexiblecu2znsnsse4solarcells
AT jowilliam impactofnadopingonthecarriertransportpathinpolycrystallineflexiblecu2znsnsse4solarcells
AT leedongseon impactofnadopingonthecarriertransportpathinpolycrystallineflexiblecu2znsnsse4solarcells