Cargando…

The Coppery Age: Copper (Cu)‐Involved Nanotheranostics

As an essential trace element in the human body, transitional metal copper (Cu) ions are the bioactive components within the body featuring dedicated biological effects such as promoting angiogenesis and influencing lipid/glucose metabolism. The recent substantial advances of nanotechnology and nano...

Descripción completa

Detalles Bibliográficos
Autores principales: Dong, Caihong, Feng, Wei, Xu, Wenwen, Yu, Luodan, Xiang, Huiijng, Chen, Yu, Zhou, Jianqiao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7610332/
https://www.ncbi.nlm.nih.gov/pubmed/33173728
http://dx.doi.org/10.1002/advs.202001549
Descripción
Sumario:As an essential trace element in the human body, transitional metal copper (Cu) ions are the bioactive components within the body featuring dedicated biological effects such as promoting angiogenesis and influencing lipid/glucose metabolism. The recent substantial advances of nanotechnology and nanomedicine promote the emerging of distinctive Cu‐involved biomaterial nanoplatforms with intriguing theranostic performances in biomedicine, which are originated from the biological effects of Cu species and the physiochemical attributes of Cu‐composed nanoparticles. Based on the very‐recent significant progresses of Cu‐involved nanotheranostics, this work highlights and discusses the principles, progresses, and prospects on the elaborate design and rational construction of Cu‐composed functional nanoplatforms for a diverse array of biomedical applications, including photonic nanomedicine, catalytic nanotherapeutics, antibacteria, accelerated tissue regeneration, and bioimaging. The engineering of Cu‐based nanocomposites for synergistic nanotherapeutics is also exemplified, followed by revealing their intrinsic biological effects and biosafety for revolutionizing their clinical translation. Finally, the underlying critical concerns, unresolved hurdles, and future prospects on their clinical uses are analyzed and an outlook is provided. By entering the “Copper Age,” these Cu‐involved nanotherapeutic modalities are expected to find more broad biomedical applications in preclinical and clinical phases, despite the current research and developments still being in infancy.