Cargando…
Subclonal reconstruction of tumors using machine learning and population genetics
The majority of cancer genomic data are generated from bulk samples composed of mixtures of cancer subpopulations, as well as normal cells. Subclonal reconstruction approaches based on machine learning aim to separate those subpopulations in a sample and reconstruct their evolutionary history. Howev...
Autores principales: | Caravagna, Giulio, Heide, Timon, Williams, Marc J., Zapata, Luis, Nichol, Daniel, Chkhaidze, Ketevan, Cross, William, Cresswell, George D., Werner, Benjamin, Acar, Ahmet, Chesler, Louis, Barnes, Chris P., Sanguinetti, Guido, Graham, Trevor A., Sottoriva, Andrea |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7610388/ https://www.ncbi.nlm.nih.gov/pubmed/32879509 http://dx.doi.org/10.1038/s41588-020-0675-5 |
Ejemplares similares
-
The MOBSTER R package for tumour subclonal deconvolution from bulk DNA whole-genome sequencing data
por: Caravagna, Giulio, et al.
Publicado: (2020) -
Spatially constrained tumour growth affects the patterns of clonal selection and neutral drift in cancer genomic data
por: Chkhaidze, Ketevan, et al.
Publicado: (2019) -
Quantification of subclonal selection in cancer from bulk sequencing data
por: Williams, Marc J., et al.
Publicado: (2018) -
Evolutionary dynamics of residual disease in human glioblastoma
por: Spiteri, I, et al.
Publicado: (2019) -
Measuring single cell divisions in human tissues from multi-region sequencing data
por: Werner, Benjamin, et al.
Publicado: (2020)